Improving the efficiency of plant root system phenotyping through digitization and automation

Copyright © 2022 by JAPANESE SOCIETY OF BREEDING.

Bibliographische Detailangaben
Veröffentlicht in:Breeding science. - 1998. - 72(2022), 1 vom: 01. März, Seite 48-55
1. Verfasser: Teramoto, Shota (VerfasserIn)
Weitere Verfasser: Uga, Yusaku
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Breeding science
Schlagworte:Journal Article high-throughput image analysis root traits semantic segmentation vectorization
LEADER 01000naa a22002652 4500
001 NLM345632273
003 DE-627
005 20231226025520.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1270/jsbbs.21053  |2 doi 
028 5 2 |a pubmed24n1152.xml 
035 |a (DE-627)NLM345632273 
035 |a (NLM)36045896 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Teramoto, Shota  |e verfasserin  |4 aut 
245 1 0 |a Improving the efficiency of plant root system phenotyping through digitization and automation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Copyright © 2022 by JAPANESE SOCIETY OF BREEDING. 
520 |a Root system architecture (RSA) determines unevenly distributed water and nutrient availability in soil. Genetic improvement of RSA, therefore, is related to crop production. However, RSA phenotyping has been carried out less frequently than above-ground phenotyping because measuring roots in the soil is difficult and labor intensive. Recent advancements have led to the digitalization of plant measurements; this digital phenotyping has been widely used for measurements of both above-ground and RSA traits. Digital phenotyping for RSA is slower and more difficult than for above-ground traits because the roots are hidden underground. In this review, we summarized recent trends in digital phenotyping for RSA traits. We classified the sample types into three categories: soil block containing roots, section of soil block, and root sample. Examples of the use of digital phenotyping are presented for each category. We also discussed room for improvement in digital phenotyping in each category 
650 4 |a Journal Article 
650 4 |a high-throughput 
650 4 |a image analysis 
650 4 |a root traits 
650 4 |a semantic segmentation 
650 4 |a vectorization 
700 1 |a Uga, Yusaku  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Breeding science  |d 1998  |g 72(2022), 1 vom: 01. März, Seite 48-55  |w (DE-627)NLM098238299  |x 1344-7610  |7 nnns 
773 1 8 |g volume:72  |g year:2022  |g number:1  |g day:01  |g month:03  |g pages:48-55 
856 4 0 |u http://dx.doi.org/10.1270/jsbbs.21053  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 72  |j 2022  |e 1  |b 01  |c 03  |h 48-55