Parameterized Hamiltonian Learning With Quantum Circuit
Hamiltonian learning, as an important quantum machine learning technique, provides a significant approach for determining an accurate quantum system. This paper establishes parameterized Hamiltonian learning (PHL) and explores its application and implementation on quantum computers. A parameterized...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 5 vom: 31. Mai, Seite 6086-6095 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Zusammenfassung: | Hamiltonian learning, as an important quantum machine learning technique, provides a significant approach for determining an accurate quantum system. This paper establishes parameterized Hamiltonian learning (PHL) and explores its application and implementation on quantum computers. A parameterized quantum circuit for Hamiltonian learning is first created by decomposing unitary operators to excite the system evolution. Then, a PHL algorithm is developed to prepare a specific Hamiltonian system by iteratively updating the gradient of the loss function about circuit parameters. Finally, the experiments are conducted on Origin Pilot, and it demonstrates that the PHL algorithm can deal with the image segmentation problem and provide a segmentation solution accurately. Compared with the classical Grabcut algorithm, the PHL algorithm eliminates the requirement of early manual intervention. It provides a new possibility for solving practical application problems with quantum devices, which also assists in solving increasingly complicated problems and supports a much wider range of application possibilities in the future |
---|---|
Beschreibung: | Date Completed 10.04.2023 Date Revised 11.04.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2022.3203157 |