Face Inverse Rendering via Hierarchical Decoupling

Previous face inverse rendering methods often require synthetic data with ground truth and/or professional equipment like a lighting stage. However, a model trained on synthetic data or using pre-defined lighting priors is typically unable to generalize well for real-world situations, due to the gap...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 30., Seite 5748-5761
1. Verfasser: Wang, Meng (VerfasserIn)
Weitere Verfasser: Guo, Xiaojie, Dai, Wenjing, Zhang, Jiawan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM345583248
003 DE-627
005 20231226025404.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3201466  |2 doi 
028 5 2 |a pubmed24n1151.xml 
035 |a (DE-627)NLM345583248 
035 |a (NLM)36040945 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Meng  |e verfasserin  |4 aut 
245 1 0 |a Face Inverse Rendering via Hierarchical Decoupling 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Previous face inverse rendering methods often require synthetic data with ground truth and/or professional equipment like a lighting stage. However, a model trained on synthetic data or using pre-defined lighting priors is typically unable to generalize well for real-world situations, due to the gap between synthetic data/lighting priors and real data. Furthermore, for common users, the professional equipment and skill make the task expensive and complex. In this paper, we propose a deep learning framework to disentangle face images in the wild into their corresponding albedo, normal, and lighting components. Specifically, a decomposition network is built with a hierarchical subdivision strategy, which takes image pairs captured from arbitrary viewpoints as input. In this way, our approach can greatly mitigate the pressure from data preparation, and significantly broaden the applicability of face inverse rendering. Extensive experiments are conducted to demonstrate the efficacy of our design, and show its superior performance in face relighting over other state-of-the-art alternatives. Our code is available at https://github.com/AutoHDR/HD-Net.git 
650 4 |a Journal Article 
700 1 |a Guo, Xiaojie  |e verfasserin  |4 aut 
700 1 |a Dai, Wenjing  |e verfasserin  |4 aut 
700 1 |a Zhang, Jiawan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 30., Seite 5748-5761  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:30  |g pages:5748-5761 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3201466  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 30  |h 5748-5761