Fuzzy Semantics for Arbitrary-Shaped Scene Text Detection

To robustly detect arbitrary-shaped scene texts, bottom-up methods are widely explored for their flexibility. Due to the highly homogeneous texture and cluttered distribution of scene texts, it is nontrivial for segmentation-based methods to discover the separatrixes between adjacent instances. To e...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 30., Seite 1-12
1. Verfasser: Wang, Fangfang (VerfasserIn)
Weitere Verfasser: Xu, Xiaogang, Chen, Yifeng, Li, Xi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM345583221
003 DE-627
005 20231226025404.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3201467  |2 doi 
028 5 2 |a pubmed24n1151.xml 
035 |a (DE-627)NLM345583221 
035 |a (NLM)36040943 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Fangfang  |e verfasserin  |4 aut 
245 1 0 |a Fuzzy Semantics for Arbitrary-Shaped Scene Text Detection 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2023 
500 |a Date Revised 05.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a To robustly detect arbitrary-shaped scene texts, bottom-up methods are widely explored for their flexibility. Due to the highly homogeneous texture and cluttered distribution of scene texts, it is nontrivial for segmentation-based methods to discover the separatrixes between adjacent instances. To effectively separate nearby texts, many methods adopt the seed expansion strategy that segments shrunken text regions as seed areas, and then iteratively expands the seed areas into intact text regions. In seek of a more straightforward way that does not rely on seed area segmentation and avoid possible error accumulation brought by iterative processing, we propose a redundancy removal strategy. In this work, we directly explore two types of fuzzy semantics-text and separatrix-that do not possess specific boundaries, and separate cluttered instances by excluding the separatrix pixels from text regions. To deal with the fuzzy semantic boundaries, we also conduct reliability analysis in both optimization and inference stage to suppress false positive pixels at ambiguous locations. Experiments on benchmark datasets demonstrate the effectiveness of our method 
650 4 |a Journal Article 
700 1 |a Xu, Xiaogang  |e verfasserin  |4 aut 
700 1 |a Chen, Yifeng  |e verfasserin  |4 aut 
700 1 |a Li, Xi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 30., Seite 1-12  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:30  |g pages:1-12 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3201467  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 30  |h 1-12