P2T : Pyramid Pooling Transformer for Scene Understanding

Recently, the vision transformer has achieved great success by pushing the state-of-the-art of various vision tasks. One of the most challenging problems in the vision transformer is that the large sequence length of image tokens leads to high computational cost (quadratic complexity). A popular sol...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 11 vom: 01. Nov., Seite 12760-12771
1. Verfasser: Wu, Yu-Huan (VerfasserIn)
Weitere Verfasser: Liu, Yun, Zhan, Xin, Cheng, Ming-Ming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM345583140
003 DE-627
005 20231226025404.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3202765  |2 doi 
028 5 2 |a pubmed24n1151.xml 
035 |a (DE-627)NLM345583140 
035 |a (NLM)36040936 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Yu-Huan  |e verfasserin  |4 aut 
245 1 0 |a P2T  |b Pyramid Pooling Transformer for Scene Understanding 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recently, the vision transformer has achieved great success by pushing the state-of-the-art of various vision tasks. One of the most challenging problems in the vision transformer is that the large sequence length of image tokens leads to high computational cost (quadratic complexity). A popular solution to this problem is to use a single pooling operation to reduce the sequence length. This paper considers how to improve existing vision transformers, where the pooled feature extracted by a single pooling operation seems less powerful. To this end, we note that pyramid pooling has been demonstrated to be effective in various vision tasks owing to its powerful ability in context abstraction. However, pyramid pooling has not been explored in backbone network design. To bridge this gap, we propose to adapt pyramid pooling to Multi-Head Self-Attention (MHSA) in the vision transformer, simultaneously reducing the sequence length and capturing powerful contextual features. Plugged with our pooling-based MHSA, we build a universal vision transformer backbone, dubbed Pyramid Pooling Transformer (P2T). Extensive experiments demonstrate that, when applied P2T as the backbone network, it shows substantial superiority in various vision tasks such as image classification, semantic segmentation, object detection, and instance segmentation, compared to previous CNN- and transformer-based networks. The code will be released at https://github.com/yuhuan-wu/P2T 
650 4 |a Journal Article 
700 1 |a Liu, Yun  |e verfasserin  |4 aut 
700 1 |a Zhan, Xin  |e verfasserin  |4 aut 
700 1 |a Cheng, Ming-Ming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 11 vom: 01. Nov., Seite 12760-12771  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:11  |g day:01  |g month:11  |g pages:12760-12771 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3202765  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 11  |b 01  |c 11  |h 12760-12771