Dynamics of initial carbon allocation after drought release in mature Norway spruce-Increased belowground allocation of current photoassimilates covers only half of the carbon used for fine-root growth

© 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 28(2022), 23 vom: 14. Dez., Seite 6889-6905
1. Verfasser: Hikino, Kyohsuke (VerfasserIn)
Weitere Verfasser: Danzberger, Jasmin, Riedel, Vincent P, Hesse, Benjamin D, Hafner, Benjamin D, Gebhardt, Timo, Rehschuh, Romy, Ruehr, Nadine K, Brunn, Melanie, Bauerle, Taryn L, Landhäusser, Simon M, Lehmann, Marco M, Rötzer, Thomas, Pretzsch, Hans, Buegger, Franz, Weikl, Fabian, Pritsch, Karin, Grams, Thorsten E E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Picea abies 13C labeling belowground carbon allocation carbon partitioning climate change drought recovery forest ecosystems watering Carbon mehr... 7440-44-0 Carbon Dioxide 142M471B3J Water 059QF0KO0R
Beschreibung
Zusammenfassung:© 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
After drought events, tree recovery depends on sufficient carbon (C) allocation to the sink organs. The present study aimed to elucidate dynamics of tree-level C sink activity and allocation of recent photoassimilates (Cnew ) and stored C in c. 70-year-old Norway spruce (Picea abies) trees during a 4-week period after drought release. We conducted a continuous, whole-tree 13 C labeling in parallel with controlled watering after 5 years of experimental summer drought. The fate of Cnew to growth and CO2 efflux was tracked along branches, stems, coarse- and fine roots, ectomycorrhizae and root exudates to soil CO2 efflux after drought release. Compared with control trees, drought recovering trees showed an overall 6% lower C sink activity and 19% less allocation of Cnew to aboveground sinks, indicating a low priority for aboveground sinks during recovery. In contrast, fine-root growth in recovering trees was seven times greater than that of controls. However, only half of the C used for new fine-root growth was comprised of Cnew while the other half was supplied by stored C. For drought recovery of mature spruce trees, in addition to Cnew , stored C appears to be critical for the regeneration of the fine-root system and the associated water uptake capacity
Beschreibung:Date Completed 04.11.2022
Date Revised 26.11.2022
published: Print-Electronic
CommentIn: Glob Chang Biol. 2022 Dec;28(23):6835-6837. - PMID 36107494
Citation Status MEDLINE
ISSN:1365-2486
DOI:10.1111/gcb.16388