Laser-Engineered Multifunctional Graphene-Glass Electronics

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 43 vom: 14. Okt., Seite e2206877
1. Verfasser: Rodriguez, Raul D (VerfasserIn)
Weitere Verfasser: Fatkullin, Maxim, Garcia, Aura, Petrov, Ilia, Averkiev, Andrey, Lipovka, Anna, Lu, Liliang, Shchadenko, Sergey, Wang, Ranran, Sun, Jing, Li, Qiu, Jia, Xin, Cheng, Chong, Kanoun, Olfa, Sheremet, Evgeniya
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article conductive nanostructures glass electronics graphene heaters graphene oxide laser-engineered nanostructures laser-induced backward transfer sensors
LEADER 01000naa a22002652 4500
001 NLM345563905
003 DE-627
005 20231226025338.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202206877  |2 doi 
028 5 2 |a pubmed24n1151.xml 
035 |a (DE-627)NLM345563905 
035 |a (NLM)36038983 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rodriguez, Raul D  |e verfasserin  |4 aut 
245 1 0 |a Laser-Engineered Multifunctional Graphene-Glass Electronics 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a Glass electronics inspire the emergence of smart functional surfaces. To evolve this concept to the next level, developing new strategies for scalable, inexpensive, and electrically conductive glass-based robust nanocomposites is crucial. Graphene is an attractive material as a conductive filler; however, integrating it firmly into a glass with no energy-intensive sintering, melting, or harsh chemicals has not been possible until now. Moreover, these methods have very limited capability for fabricating robust patterns for electronic circuits. In this work, a conductive (160 OΩ sq-1 ) and resilient nanocomposite between glass and graphene is achieved via single-step laser-induced backward transfer (LIBT). Beyond conventional LIBT involving mass transfer, this approach simultaneously drives chemical transformations in glass including silicon compound formation and graphene oxide (GO) reduction. These processes take place together with the generation and transfer of the highest-quality laser-reduced GO (rGO) reported to date (Raman intensity ratio ID /IG  = 0.31) and its integration into the glass. The rGO-LIBT nanocomposite is further functionalized with silver to achieve a highly sensitive (10-9  m) dual-channel plasmonic optical and electrochemical sensor. Besides the electrical circuit demonstration, an electrothermal heater is fabricated that reaches temperatures above 300 °C and continuously operates for over 48 h 
650 4 |a Journal Article 
650 4 |a conductive nanostructures 
650 4 |a glass electronics 
650 4 |a graphene heaters 
650 4 |a graphene oxide 
650 4 |a laser-engineered nanostructures 
650 4 |a laser-induced backward transfer 
650 4 |a sensors 
700 1 |a Fatkullin, Maxim  |e verfasserin  |4 aut 
700 1 |a Garcia, Aura  |e verfasserin  |4 aut 
700 1 |a Petrov, Ilia  |e verfasserin  |4 aut 
700 1 |a Averkiev, Andrey  |e verfasserin  |4 aut 
700 1 |a Lipovka, Anna  |e verfasserin  |4 aut 
700 1 |a Lu, Liliang  |e verfasserin  |4 aut 
700 1 |a Shchadenko, Sergey  |e verfasserin  |4 aut 
700 1 |a Wang, Ranran  |e verfasserin  |4 aut 
700 1 |a Sun, Jing  |e verfasserin  |4 aut 
700 1 |a Li, Qiu  |e verfasserin  |4 aut 
700 1 |a Jia, Xin  |e verfasserin  |4 aut 
700 1 |a Cheng, Chong  |e verfasserin  |4 aut 
700 1 |a Kanoun, Olfa  |e verfasserin  |4 aut 
700 1 |a Sheremet, Evgeniya  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 43 vom: 14. Okt., Seite e2206877  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:43  |g day:14  |g month:10  |g pages:e2206877 
856 4 0 |u http://dx.doi.org/10.1002/adma.202206877  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 43  |b 14  |c 10  |h e2206877