Automating process design by coupling genetic algorithms with commercial simulators : a case study for hybrid MABR processes

The development of commercial software and simulators has progressed to assist engineers to optimize design, operation, and control of wastewater treatment processes. Commonly, manual trial-and-error approaches combined with engineering experience or exhaustive searches are used to find candidate so...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 86(2022), 4 vom: 14. Aug., Seite 672-689
1. Verfasser: Yang, Cheng (VerfasserIn)
Weitere Verfasser: Belia, Evangelia, Daigger, Glen T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Waste Water Nitrogen N762921K75
LEADER 01000naa a22002652 4500
001 NLM34556376X
003 DE-627
005 20231226025338.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.2166/wst.2022.234  |2 doi 
028 5 2 |a pubmed24n1151.xml 
035 |a (DE-627)NLM34556376X 
035 |a (NLM)36038971 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Cheng  |e verfasserin  |4 aut 
245 1 0 |a Automating process design by coupling genetic algorithms with commercial simulators  |b a case study for hybrid MABR processes 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.08.2022 
500 |a Date Revised 07.12.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The development of commercial software and simulators has progressed to assist engineers to optimize design, operation, and control of wastewater treatment processes. Commonly, manual trial-and-error approaches combined with engineering experience or exhaustive searches are used to find candidate solutions. These approaches are becoming less favorable because of the increasingly elaborate process models, especially for new and innovative processes whose process knowledge is not fully established. This study coupled genetic algorithms (GAs), a subfield of artificial intelligence (AI), with a commercial simulator (SUMO) to automatically complete a design task. The design objective was the upgrade of a conventional Modified Ludzack-Ettinger (MLE) process to a hybrid membrane aerated biofilm reactor (hybrid MABR). Results demonstrated that GAs can (1) accurately estimate five influent wastewater fractions using eleven typical measurements - 3 out of 5 estimated fractions were nearly the same and the other two were within 7% relative errors and (2) propose reasonable designs for the hybrid MABR process that reduce footprint by 17%, aeration by 57%, and pumping by 57% with significantly improved effluent nitrogen quality (TN<3 mg-N/L). This study demonstrated that tools from AI promote efficiency in wastewater treatment process design, optimization and control by searching candidate solutions both smartly and automatically in replacement of manual trial-and-error methods. The methodology in this study contributes to accumulating process knowledge, understanding trade-offs between decisions, and finally accelerates the learning pace for new processes 
650 4 |a Journal Article 
650 7 |a Waste Water  |2 NLM 
650 7 |a Nitrogen  |2 NLM 
650 7 |a N762921K75  |2 NLM 
700 1 |a Belia, Evangelia  |e verfasserin  |4 aut 
700 1 |a Daigger, Glen T  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 86(2022), 4 vom: 14. Aug., Seite 672-689  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnns 
773 1 8 |g volume:86  |g year:2022  |g number:4  |g day:14  |g month:08  |g pages:672-689 
856 4 0 |u http://dx.doi.org/10.2166/wst.2022.234  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 86  |j 2022  |e 4  |b 14  |c 08  |h 672-689