Learning to Infer Inner-Body Under Clothing From Monocular Video

Accurately estimating the human inner-body under clothing is very important for body measurement, virtual try-on and VR/AR applications. In this article, we propose the first method to allow everyone to easily reconstruct their own 3D inner-body under daily clothing from a self-captured video with t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 12 vom: 14. Dez., Seite 5083-5096
1. Verfasser: Li, Xiongzheng (VerfasserIn)
Weitere Verfasser: Huang, Jing, Zhang, Jinsong, Sun, Xiaokun, Xuan, Haibiao, Lai, Yu-Kun, Xie, Yingdi, Yang, Jingyu, Li, Kun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Accurately estimating the human inner-body under clothing is very important for body measurement, virtual try-on and VR/AR applications. In this article, we propose the first method to allow everyone to easily reconstruct their own 3D inner-body under daily clothing from a self-captured video with the mean reconstruction error of 0.73cm within 15s. This avoids privacy concerns arising from nudity or minimal clothing. Specifically, we propose a novel two-stage framework with a Semantic-guided Undressing Network (SUNet) and an Intra-Inter Transformer Network (IITNet). SUNet learns semantically related body features to alleviate the complexity and uncertainty of directly estimating 3D inner-bodies under clothing. IITNet reconstructs the 3D inner-body model by making full use of intra-frame and inter-frame information, which addresses the misalignment of inconsistent poses in different frames. Experimental results on both public datasets and our collected dataset demonstrate the effectiveness of the proposed method. The code and dataset is available for research purposes at http://cic.tju.edu.cn/faculty/likun/projects/Inner-Body
Beschreibung:Date Completed 13.11.2023
Date Revised 22.11.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2022.3202240