Exceptionally High Saturation Magnetic Flux Density and Ultralow Coercivity via an Amorphous-Nanocrystalline Transitional Microstructure in an FeCo-Based Alloy
© 2022 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 50 vom: 01. Dez., Seite e2205863 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article coercivity magnetic domains nanocrystalline alloys saturation magnetic flux density transitional microstructure |
Zusammenfassung: | © 2022 Wiley-VCH GmbH. High saturation magnetic flux density (Bs ) of soft magnetic materials is essential for increasing the power density of modern magnetic devices and motor machines. Yet, increasing Bs is always at the expense of high coercivity (Hc ), presenting a general trade-off in the soft magnetic material family. Here, superior comprehensive soft magnetic properties, i.e., an exceptionally high Bs of up to 1.94 T and Hc as low as 4.3 A m-1 are unprecedentedly combined in an FeCo-based alloy. This alloy is obtained through a composition design strategy to construct a transitional microstructure between amorphous and traditional nanocrystalline alloys, with nanocrystals (with < 5 nm-sized crystal-like regions around) sparsely dispersed in an amorphous matrix. Such transitional microstructure possesses extremely low magnetic anisotropy caused by the annihilation of quasi-dislocation dipoles, and a strong magnetic exchange interaction, which leads to excellent comprehensive magnetic properties. The results provide useful guidelines for the development of the next generation of soft magnetic materials, which are promising for applications of high-frequency, high-efficiency, and energy-saving devices |
---|---|
Beschreibung: | Date Revised 14.12.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202205863 |