Anti-aliasing convolution neural network of finger vein recognition for virtual reality (VR) human-robot equipment of metaverse

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.

Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing. - 1998. - 79(2023), 3 vom: 10., Seite 2767-2782
1. Verfasser: Tran, Nghi C (VerfasserIn)
Weitere Verfasser: Wang, Jian-Hong, Vu, Toan H, Tai, Tzu-Chiang, Wang, Jia-Ching
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:The Journal of supercomputing
Schlagworte:Journal Article Anti-aliasing Biometrics Convolution network Deep learning Finger vein recognition Image processing Metaverse Pre-processing Virtual reality (VR) human–robot
LEADER 01000caa a22002652c 4500
001 NLM345530667
003 DE-627
005 20250303183536.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1007/s11227-022-04680-4  |2 doi 
028 5 2 |a pubmed25n1151.xml 
035 |a (DE-627)NLM345530667 
035 |a (NLM)36035635 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tran, Nghi C  |e verfasserin  |4 aut 
245 1 0 |a Anti-aliasing convolution neural network of finger vein recognition for virtual reality (VR) human-robot equipment of metaverse 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. 
520 |a Metaverse, which is anticipated to be the future of the internet, is a 3D virtual world in which users interact via highly customizable computer avatars. It is considerably promising for several industries, including gaming, education, and business. However, it still has drawbacks, particularly in the privacy and identity threads. When a person joins the metaverse via a virtual reality (VR) human-robot equipment, their avatar, digital assets, and private information may be compromised by cybercriminals. This paper introduces a specific Finger Vein Recognition approach for the virtual reality (VR) human-robot equipment of the metaverse of the Metaverse to prevent others from misappropriating it. Finger vein is a is a biometric feature hidden beneath our skin. It is considerably more secure in person verification than other hand-based biometric characteristics such as finger print and palm print since it is difficult to imitate. Most conventional finger vein recognition systems that use hand-crafted features are ineffective, especially for images with low quality, low contrast, scale variation, translation, and rotation. Deep learning methods have been demonstrated to be more successful than traditional methods in computer vision. This paper develops a finger vein recognition system based on a convolution neural network and anti-aliasing technique. We employ/ utilize a contrast image enhancement algorithm in the preprocessing step to improve performance of the system. The proposed approach is evaluated on three publicly available finger vein datasets. Experimental results show that our proposed method outperforms the current state-of-the-art methods, improvement of 97.66% accuracy on FVUSM dataset, 99.94% accuracy on SDUMLA dataset, and 88.19% accuracy on THUFV2 dataset 
650 4 |a Journal Article 
650 4 |a Anti-aliasing 
650 4 |a Biometrics 
650 4 |a Convolution network 
650 4 |a Deep learning 
650 4 |a Finger vein recognition 
650 4 |a Image processing 
650 4 |a Metaverse 
650 4 |a Pre-processing 
650 4 |a Virtual reality (VR) human–robot 
700 1 |a Wang, Jian-Hong  |e verfasserin  |4 aut 
700 1 |a Vu, Toan H  |e verfasserin  |4 aut 
700 1 |a Tai, Tzu-Chiang  |e verfasserin  |4 aut 
700 1 |a Wang, Jia-Ching  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The Journal of supercomputing  |d 1998  |g 79(2023), 3 vom: 10., Seite 2767-2782  |w (DE-627)NLM098252410  |x 0920-8542  |7 nnas 
773 1 8 |g volume:79  |g year:2023  |g number:3  |g day:10  |g pages:2767-2782 
856 4 0 |u http://dx.doi.org/10.1007/s11227-022-04680-4  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 79  |j 2023  |e 3  |b 10  |h 2767-2782