Comparative transcriptomics and metabolomics reveal specialized metabolite drought stress responses in switchgrass (Panicum virgatum)

© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 236(2022), 4 vom: 05. Nov., Seite 1393-1408
1. Verfasser: Tiedge, Kira (VerfasserIn)
Weitere Verfasser: Li, Xingxing, Merrill, Amy T, Davisson, Danielle, Chen, Yuxuan, Yu, Ping, Tantillo, Dean J, Last, Robert L, Zerbe, Philipp
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't Panicum virgatum (switchgrass) bioenergy crops diterpenoids drought stress metabolomics natural products plant specialized metabolism mehr... transcriptomics Diterpenes Carbohydrates Terpenes Triterpenes Flavonoids Amino Acids
Beschreibung
Zusammenfassung:© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
Switchgrass (Panicum virgatum) is a bioenergy model crop valued for its energy efficiency and drought tolerance. The related monocot species rice (Oryza sativa) and maize (Zea mays) deploy species-specific, specialized metabolites as core stress defenses. By contrast, specialized chemical defenses in switchgrass are largely unknown. To investigate specialized metabolic drought responses in switchgrass, we integrated tissue-specific transcriptome and metabolite analyses of the genotypes Alamo and Cave-in-Rock that feature different drought tolerance. The more drought-susceptible Cave-in-Rock featured an earlier onset of transcriptomic changes and significantly more differentially expressed genes in response to drought compared to Alamo. Specialized pathways showed moderate differential expression compared to pronounced transcriptomic alterations in carbohydrate and amino acid metabolism. However, diterpenoid-biosynthetic genes showed drought-inducible expression in Alamo roots, contrasting largely unaltered triterpenoid and phenylpropanoid pathways. Metabolomic analyses identified common and genotype-specific flavonoids and terpenoids. Consistent with transcriptomic alterations, several root diterpenoids showed significant drought-induced accumulation, whereas triterpenoid abundance remained predominantly unchanged. Structural analysis verified select drought-responsive diterpenoids as oxygenated furanoditerpenoids. Drought-dependent transcriptome and metabolite profiles provide the foundation to understand the molecular mechanisms underlying switchgrass drought responses. Accumulation of specialized root diterpenoids and corresponding pathway transcripts supports a role in drought stress tolerance
Beschreibung:Date Completed 21.10.2022
Date Revised 13.02.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.18443