The Future Strikes Back : Using Future Treatments to Detect and Reduce Hidden Bias

Conventional advice discourages controlling for postoutcome variables in regression analysis. By contrast, we show that controlling for commonly available postoutcome (i.e., future) values of the treatment variable can help detect, reduce, and even remove omitted variable bias (unobserved confoundin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Sociological methods & research. - 1977. - 51(2022), 3 vom: 25. Aug., Seite 1014-1051
1. Verfasser: Elwert, Felix (VerfasserIn)
Weitere Verfasser: Pfeffer, Fabian T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Sociological methods & research
Schlagworte:Journal Article bias causal inference confounding directed acyclic graphs future treatments
LEADER 01000caa a22002652 4500
001 NLM345350928
003 DE-627
005 20240923233306.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1177/0049124119875958  |2 doi 
028 5 2 |a pubmed24n1545.xml 
035 |a (DE-627)NLM345350928 
035 |a (NLM)36016698 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Elwert, Felix  |e verfasserin  |4 aut 
245 1 4 |a The Future Strikes Back  |b Using Future Treatments to Detect and Reduce Hidden Bias 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Conventional advice discourages controlling for postoutcome variables in regression analysis. By contrast, we show that controlling for commonly available postoutcome (i.e., future) values of the treatment variable can help detect, reduce, and even remove omitted variable bias (unobserved confounding). The premise is that the same unobserved confounder that affects treatment also affects the future value of the treatment. Future treatments thus proxy for the unmeasured confounder, and researchers can exploit these proxy measures productively. We establish several new results: Regarding a commonly assumed data-generating process involving future treatments, we (1) introduce a simple new approach and show that it strictly reduces bias, (2) elaborate on existing approaches and show that they can increase bias, (3) assess the relative merits of alternative approaches, and (4) analyze true state dependence and selection as key challenges. (5) Importantly, we also introduce a new nonparametric test that uses future treatments to detect hidden bias even when future-treatment estimation fails to reduce bias. We illustrate these results empirically with an analysis of the effect of parental income on children's educational attainment 
650 4 |a Journal Article 
650 4 |a bias 
650 4 |a causal inference 
650 4 |a confounding 
650 4 |a directed acyclic graphs 
650 4 |a future treatments 
700 1 |a Pfeffer, Fabian T  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Sociological methods & research  |d 1977  |g 51(2022), 3 vom: 25. Aug., Seite 1014-1051  |w (DE-627)NLM098167944  |x 0049-1241  |7 nnns 
773 1 8 |g volume:51  |g year:2022  |g number:3  |g day:25  |g month:08  |g pages:1014-1051 
856 4 0 |u http://dx.doi.org/10.1177/0049124119875958  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2022  |e 3  |b 25  |c 08  |h 1014-1051