A Machine-Learning-Enhanced Simultaneous and Multimodal Sensor Based on Moist-Electric Powered Graphene Oxide

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 41 vom: 25. Okt., Seite e2205249
1. Verfasser: Yang, Ce (VerfasserIn)
Weitere Verfasser: Wang, Haiyan, Yang, Jiawei, Yao, Houze, He, Tiancheng, Bai, Jiaxin, Guang, Tianlei, Cheng, Huhu, Yan, Jianfeng, Qu, Liangti
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article moist-electric multimodal sensor self-powered sensors simultaneous monitoring graphene oxide Water 059QF0KO0R Graphite 7782-42-5
LEADER 01000naa a22002652 4500
001 NLM345255496
003 DE-627
005 20231226024640.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202205249  |2 doi 
028 5 2 |a pubmed24n1150.xml 
035 |a (DE-627)NLM345255496 
035 |a (NLM)36007144 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Ce  |e verfasserin  |4 aut 
245 1 2 |a A Machine-Learning-Enhanced Simultaneous and Multimodal Sensor Based on Moist-Electric Powered Graphene Oxide 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.10.2022 
500 |a Date Revised 17.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a Simultaneous multimodal monitoring can greatly perceive intricately multiple stimuli, which is important for the understanding and development of a future human-machine fusion world. However, the integrated multisensor networks with cumbersome structure, huge power consumption, and complex preparation process have heavily restricted practical applications. Herein, a graphene oxide single-component multimodal sensor (GO-MS) is developed, which enables simultaneous monitoring of multiple environmental stimuli by a single unit with unique moist-electric self-power supply. This GO-MS can generate a sustainable moist-electric potential by spontaneously adsorbing water molecules in air, which has a characteristic response behavior when exposed to different stimuli. As a result, the simultaneous monitoring and decoupling of the changes of temperature, humidity, pressure, and light intensity are achieved by this single GO-MS with machine-learning (ML) assistance. Of practical importance, a moist-electric-powered human-machine interaction wristband based on GO-MS is constructed to monitor pulse signals, body temperature, and sweating in a multidimensional manner, as well as gestures and sign language commanding communication. This ML-empowered moist-electric GO-MS provides a new platform for the development of self-powered single-component multimodal sensors, showing great potential for applications in the fields of health detection, artificial electronic skin, and the Internet-of-Things 
650 4 |a Journal Article 
650 4 |a moist-electric 
650 4 |a multimodal sensor 
650 4 |a self-powered sensors 
650 4 |a simultaneous monitoring 
650 7 |a graphene oxide  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Graphite  |2 NLM 
650 7 |a 7782-42-5  |2 NLM 
700 1 |a Wang, Haiyan  |e verfasserin  |4 aut 
700 1 |a Yang, Jiawei  |e verfasserin  |4 aut 
700 1 |a Yao, Houze  |e verfasserin  |4 aut 
700 1 |a He, Tiancheng  |e verfasserin  |4 aut 
700 1 |a Bai, Jiaxin  |e verfasserin  |4 aut 
700 1 |a Guang, Tianlei  |e verfasserin  |4 aut 
700 1 |a Cheng, Huhu  |e verfasserin  |4 aut 
700 1 |a Yan, Jianfeng  |e verfasserin  |4 aut 
700 1 |a Qu, Liangti  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 41 vom: 25. Okt., Seite e2205249  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:41  |g day:25  |g month:10  |g pages:e2205249 
856 4 0 |u http://dx.doi.org/10.1002/adma.202205249  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 41  |b 25  |c 10  |h e2205249