Semi-Supervised and Unsupervised Deep Visual Learning : A Survey

State-of-the-art deep learning models are often trained with a large amount of costly labeled training data. However, requiring exhaustive manual annotations may degrade the model's generalizability in the limited-label regime.Semi-supervised learning and unsupervised learning offer promising p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 3 vom: 20. Feb., Seite 1327-1347
1. Verfasser: Chen, Yanbei (VerfasserIn)
Weitere Verfasser: Mancini, Massimiliano, Zhu, Xiatian, Akata, Zeynep
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM345252934
003 DE-627
005 20240207231954.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3201576  |2 doi 
028 5 2 |a pubmed24n1283.xml 
035 |a (DE-627)NLM345252934 
035 |a (NLM)36006881 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Yanbei  |e verfasserin  |4 aut 
245 1 0 |a Semi-Supervised and Unsupervised Deep Visual Learning  |b A Survey 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a State-of-the-art deep learning models are often trained with a large amount of costly labeled training data. However, requiring exhaustive manual annotations may degrade the model's generalizability in the limited-label regime.Semi-supervised learning and unsupervised learning offer promising paradigms to learn from an abundance of unlabeled visual data. Recent progress in these paradigms has indicated the strong benefits of leveraging unlabeled data to improve model generalization and provide better model initialization. In this survey, we review the recent advanced deep learning algorithms on semi-supervised learning (SSL) and unsupervised learning (UL) for visual recognition from a unified perspective. To offer a holistic understanding of the state-of-the-art in these areas, we propose a unified taxonomy. We categorize existing representative SSL and UL with comprehensive and insightful analysis to highlight their design rationales in different learning scenarios and applications in different computer vision tasks. Lastly, we discuss the emerging trends and open challenges in SSL and UL to shed light on future critical research directions 
650 4 |a Journal Article 
700 1 |a Mancini, Massimiliano  |e verfasserin  |4 aut 
700 1 |a Zhu, Xiatian  |e verfasserin  |4 aut 
700 1 |a Akata, Zeynep  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 3 vom: 20. Feb., Seite 1327-1347  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:3  |g day:20  |g month:02  |g pages:1327-1347 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3201576  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 3  |b 20  |c 02  |h 1327-1347