Advanced deep learning approaches to predict supply chain risks under COVID-19 restrictions

© 2022 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications. - 1999. - 211(2023) vom: 01. Jan., Seite 118604
1. Verfasser: Bassiouni, Mahmoud M (VerfasserIn)
Weitere Verfasser: Chakrabortty, Ripon K, Hussain, Omar K, Rahman, Humyun Fuad
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Expert systems with applications
Schlagworte:Journal Article COVID-19 Classifiers Convolutional network Deep learning Supply chain risk Temporal convolutional network
LEADER 01000caa a22002652 4500
001 NLM345183010
003 DE-627
005 20240909232241.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.eswa.2022.118604  |2 doi 
028 5 2 |a pubmed24n1528.xml 
035 |a (DE-627)NLM345183010 
035 |a (NLM)35999828 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bassiouni, Mahmoud M  |e verfasserin  |4 aut 
245 1 0 |a Advanced deep learning approaches to predict supply chain risks under COVID-19 restrictions 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Elsevier Ltd. All rights reserved. 
520 |a The ongoing COVID-19 pandemic has created an unprecedented predicament for global supply chains (SCs). Shipments of essential and life-saving products, ranging from pharmaceuticals, agriculture, and healthcare, to manufacturing, have been significantly impacted or delayed, making the global SCs vulnerable. A better understanding of the shipment risks can substantially reduce that nervousness. Thenceforth, this paper proposes a few Deep Learning (DL) approaches to mitigate shipment risks by predicting "if a shipment can be exported from one source to another", despite the restrictions imposed by the COVID-19 pandemic. The proposed DL methodologies have four main stages: data capturing, de-noising or pre-processing, feature extraction, and classification. The feature extraction stage depends on two main variants of DL models. The first variant involves three recurrent neural networks (RNN) structures (i.e., long short-term memory (LSTM), Bidirectional long short-term memory (BiLSTM), and gated recurrent unit (GRU)), and the second variant is the temporal convolutional network (TCN). In terms of the classification stage, six different classifiers are applied to test the entire methodology. These classifiers are SoftMax, random trees (RT), random forest (RF), k-nearest neighbor (KNN), artificial neural network (ANN), and support vector machine (SVM). The performance of the proposed DL models is evaluated based on an online dataset (taken as a case study). The numerical results show that one of the proposed models (i.e., TCN) is about 100% accurate in predicting the risk of shipment to a particular destination under COVID-19 restrictions. Unarguably, the aftermath of this work will help the decision-makers to predict supply chain risks proactively to increase the resiliency of the SCs 
650 4 |a Journal Article 
650 4 |a COVID-19 
650 4 |a Classifiers 
650 4 |a Convolutional network 
650 4 |a Deep learning 
650 4 |a Supply chain risk 
650 4 |a Temporal convolutional network 
700 1 |a Chakrabortty, Ripon K  |e verfasserin  |4 aut 
700 1 |a Hussain, Omar K  |e verfasserin  |4 aut 
700 1 |a Rahman, Humyun Fuad  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Expert systems with applications  |d 1999  |g 211(2023) vom: 01. Jan., Seite 118604  |w (DE-627)NLM098196782  |x 0957-4174  |7 nnns 
773 1 8 |g volume:211  |g year:2023  |g day:01  |g month:01  |g pages:118604 
856 4 0 |u http://dx.doi.org/10.1016/j.eswa.2022.118604  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 211  |j 2023  |b 01  |c 01  |h 118604