|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM345134168 |
003 |
DE-627 |
005 |
20250303174819.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.wasman.2022.08.006
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1150.xml
|
035 |
|
|
|a (DE-627)NLM345134168
|
035 |
|
|
|a (NLM)35994899
|
035 |
|
|
|a (PII)S0956-053X(22)00408-1
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Huysveld, S
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Technical and market substitutability of recycled materials
|b Calculating the environmental benefits of mechanical and chemical recycling of plastic packaging waste
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 07.09.2022
|
500 |
|
|
|a Date Revised 07.09.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright © 2022 Elsevier Ltd. All rights reserved.
|
520 |
|
|
|a Most plastics are today mechanically recycled (MR), whereas chemical recycling (CR) is an emerging technology. Substitutability of virgin material is vital for their environmental performance assessed through life cycle assessment (LCA). MR faces the reduction in the material's technical quality but also the potential market because legal safety requirements currently eliminate applications such as food packaging. This study presents a data-driven method for quantifying the overall substitutability (OS), composed of technical (TS) and market substitutability (MS). First, this is illustrated for six non-food contact material (non-FCM) applications and three hypothetical future FCM applications from mechanical recyclates, using mechanical property and market data. Then, OS results are used in a comparative LCA of MR and thermochemical recycling (TCR) of several plastic waste fractions in Belgium. For mechanical recyclates, TS results for the studied non-FCM and FCM applications were comparable, but OS results varied between 0.35 and 0.79 for non-FCM applications and between 0.78 and 1 for FCM applications, reflecting the lower MS results for the current situation. Out of nine application scenarios, MR obtained a worse resource consumption and terrestrial acidification impact than CR in six scenarios. MR maintained the lowest global warming impact for all scenarios. This study contributes to an improved understanding of the environmental benefits of MR and TCR. Inclusion of other criteria (e.g. processability, colour, odour) in the quantification of the overall substitutability for MR products should be further investigated, as well as the environmental performance of TCR at industrial scale
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Chemical recycling
|
650 |
|
4 |
|a Food packaging
|
650 |
|
4 |
|a Life cycle assessment
|
650 |
|
4 |
|a Mechanical Recycling
|
650 |
|
4 |
|a Plastic waste
|
650 |
|
4 |
|a Substitutability
|
650 |
|
7 |
|a Plastics
|2 NLM
|
650 |
|
7 |
|a Receptors, Antigen, T-Cell
|2 NLM
|
700 |
1 |
|
|a Ragaert, K
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Demets, R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nhu, T T
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Civancik-Uslu, D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kusenberg, M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Van Geem, K M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a De Meester, S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dewulf, J
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Waste management (New York, N.Y.)
|d 1999
|g 152(2022) vom: 15. Okt., Seite 69-79
|w (DE-627)NLM098197061
|x 1879-2456
|7 nnas
|
773 |
1 |
8 |
|g volume:152
|g year:2022
|g day:15
|g month:10
|g pages:69-79
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1016/j.wasman.2022.08.006
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 152
|j 2022
|b 15
|c 10
|h 69-79
|