HoughNet : Integrating Near and Long-Range Evidence for Visual Detection

This paper presents HoughNet, a one-stage, anchor-free, voting-based, bottom-up object detection method. Inspired by the Generalized Hough Transform, HoughNet determines the presence of an object at a certain location by the sum of the votes cast on that location. Votes are collected from both near...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 4 vom: 22. Apr., Seite 4667-4681
1. Verfasser: Samet, Nermin (VerfasserIn)
Weitere Verfasser: Hicsonmez, Samet, Akbas, Emre
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM345130650
003 DE-627
005 20231226024352.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3200413  |2 doi 
028 5 2 |a pubmed24n1150.xml 
035 |a (DE-627)NLM345130650 
035 |a (NLM)35994542 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Samet, Nermin  |e verfasserin  |4 aut 
245 1 0 |a HoughNet  |b Integrating Near and Long-Range Evidence for Visual Detection 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 10.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents HoughNet, a one-stage, anchor-free, voting-based, bottom-up object detection method. Inspired by the Generalized Hough Transform, HoughNet determines the presence of an object at a certain location by the sum of the votes cast on that location. Votes are collected from both near and long-distance locations based on a log-polar vote field. Thanks to this voting mechanism, HoughNet is able to integrate both near and long-range, class-conditional evidence for visual recognition, thereby generalizing and enhancing current object detection methodology, which typically relies on only local evidence. On the COCO dataset, HoughNet's best model achieves 46.4 AP (and 65.1 AP50), performing on par with the state-of-the-art in bottom-up object detection and outperforming most major one-stage and two-stage methods. We further validate the effectiveness of our proposal in other visual detection tasks, namely, video object detection, instance segmentation, 3D object detection and keypoint detection for human pose estimation, and an additional "labels to photo'' image generation task, where the integration of our voting module consistently improves performance in all cases 
650 4 |a Journal Article 
700 1 |a Hicsonmez, Samet  |e verfasserin  |4 aut 
700 1 |a Akbas, Emre  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 4 vom: 22. Apr., Seite 4667-4681  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:4  |g day:22  |g month:04  |g pages:4667-4681 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3200413  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 4  |b 22  |c 04  |h 4667-4681