Visualization and quantification of carbon "rusty sink" by rice root iron plaque : Mechanisms, functions, and global implications

© 2022 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 28(2022), 22 vom: 01. Nov., Seite 6711-6727
1. Verfasser: Wei, Liang (VerfasserIn)
Weitere Verfasser: Zhu, Zhenke, Razavi, Bahar S, Xiao, Mouliang, Dorodnikov, Maxim, Fan, Lichao, Yuan, Hongzhao, Yurtaev, Andrey, Luo, Yu, Cheng, Weiguo, Kuzyakov, Yakov, Wu, Jinshui, Ge, Tida
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Fe-oxidizing and Fe-reducing bacteria carbon sequestration enzyme activity fluctuating redox conditions iron plaque rhizosphere processes Oxides Phosphates Soil mehr... Soil Pollutants Carbon 7440-44-0 Iron E1UOL152H7 Cellulases EC 3.2.1.- Oxygen S88TT14065
LEADER 01000caa a22002652c 4500
001 NLM345049853
003 DE-627
005 20250303173628.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.16372  |2 doi 
028 5 2 |a pubmed25n1149.xml 
035 |a (DE-627)NLM345049853 
035 |a (NLM)35986445 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wei, Liang  |e verfasserin  |4 aut 
245 1 0 |a Visualization and quantification of carbon "rusty sink" by rice root iron plaque  |b Mechanisms, functions, and global implications 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.10.2022 
500 |a Date Revised 03.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 John Wiley & Sons Ltd. 
520 |a Paddies contain 78% higher organic carbon (C) stocks than adjacent upland soils, and iron (Fe) plaque formation on rice roots is one of the mechanisms that traps C. The process sequence, extent and global relevance of this C stabilization mechanism under oxic/anoxic conditions remains unclear. We quantified and localized the contribution of Fe plaque to organic matter stabilization in a microoxic area (rice rhizosphere) and evaluated roles of this C trap for global C sequestration in paddy soils. Visualization and localization of pH by imaging with planar optodes, enzyme activities by zymography, and root exudation by 14 C imaging, as well as upscale modeling enabled linkage of three groups of rhizosphere processes that are responsible for C stabilization from the micro- (root) to the macro- (ecosystem) levels. The 14 C activity in soil (reflecting stabilization of rhizodeposits) with Fe2+ addition was 1.4-1.5 times higher than that in the control and phosphate addition soils. Perfect co-localization of the hotspots of β-glucosidase activity (by zymography) with root exudation (14 C) showed that labile C and high enzyme activities were localized within Fe plaques. Fe2+ addition to soil and its microbial oxidation to Fe3+ by radial oxygen release from rice roots increased Fe plaque (Fe3+ ) formation by 1.7-2.5 times. The C amounts trapped by Fe plaque increased by 1.1 times after Fe2+ addition. Therefore, Fe plaque formed from amorphous and complex Fe (oxyhydr)oxides on the root surface act as a "rusty sink" for organic matter. Considering the area of coverage of paddy soils globally, upscaling by model revealed the radial oxygen loss from roots and bacterial Fe oxidation may trap up to 130 Mg C in Fe plaques per rice season. This represents an important annual surplus of new and stable C to the existing C pool under long-term rice cropping 
650 4 |a Journal Article 
650 4 |a Fe-oxidizing and Fe-reducing bacteria 
650 4 |a carbon sequestration 
650 4 |a enzyme activity 
650 4 |a fluctuating redox conditions 
650 4 |a iron plaque 
650 4 |a rhizosphere processes 
650 7 |a Oxides  |2 NLM 
650 7 |a Phosphates  |2 NLM 
650 7 |a Soil  |2 NLM 
650 7 |a Soil Pollutants  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
650 7 |a Iron  |2 NLM 
650 7 |a E1UOL152H7  |2 NLM 
650 7 |a Cellulases  |2 NLM 
650 7 |a EC 3.2.1.-  |2 NLM 
650 7 |a Oxygen  |2 NLM 
650 7 |a S88TT14065  |2 NLM 
700 1 |a Zhu, Zhenke  |e verfasserin  |4 aut 
700 1 |a Razavi, Bahar S  |e verfasserin  |4 aut 
700 1 |a Xiao, Mouliang  |e verfasserin  |4 aut 
700 1 |a Dorodnikov, Maxim  |e verfasserin  |4 aut 
700 1 |a Fan, Lichao  |e verfasserin  |4 aut 
700 1 |a Yuan, Hongzhao  |e verfasserin  |4 aut 
700 1 |a Yurtaev, Andrey  |e verfasserin  |4 aut 
700 1 |a Luo, Yu  |e verfasserin  |4 aut 
700 1 |a Cheng, Weiguo  |e verfasserin  |4 aut 
700 1 |a Kuzyakov, Yakov  |e verfasserin  |4 aut 
700 1 |a Wu, Jinshui  |e verfasserin  |4 aut 
700 1 |a Ge, Tida  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 28(2022), 22 vom: 01. Nov., Seite 6711-6727  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnas 
773 1 8 |g volume:28  |g year:2022  |g number:22  |g day:01  |g month:11  |g pages:6711-6727 
856 4 0 |u http://dx.doi.org/10.1111/gcb.16372  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 22  |b 01  |c 11  |h 6711-6727