Towards automatic waste containers management in cities via computer vision : containers localization and geo-positioning in city maps

Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 152(2022) vom: 16. Okt., Seite 59-68
1. Verfasser: Moral, Paula (VerfasserIn)
Weitere Verfasser: García-Martín, Álvaro, Escudero-Viñolo, Marcos, Martínez, José M, Bescós, Jesús, Peñuela, Jesús, Martínez, Juan Carlos, Alvis, Gonzalo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Computer Vision Deep Learning Object detection Waste container localization Plastics
LEADER 01000naa a22002652 4500
001 NLM345036271
003 DE-627
005 20231226024143.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2022.08.007  |2 doi 
028 5 2 |a pubmed24n1150.xml 
035 |a (DE-627)NLM345036271 
035 |a (NLM)35985078 
035 |a (PII)S0956-053X(22)00409-3 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Moral, Paula  |e verfasserin  |4 aut 
245 1 0 |a Towards automatic waste containers management in cities via computer vision  |b containers localization and geo-positioning in city maps 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.09.2022 
500 |a Date Revised 07.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved. 
520 |a This paper describes the scientific achievements of a collaboration between a research group and the waste management division of a company. While these results might be the basis for several practical or commercial developments, we here focus on a novel scientific contribution: a methodology to automatically generate geo-located waste container maps. It is based on the use of Computer Vision algorithms to detect waste containers and identify their geographic location and dimensions. Algorithms analyze a video sequence and provide an automatic discrimination between images with and without containers. More precisely, two state-of-the-art object detectors based on deep learning techniques have been selected for testing, according to their performance and to their adaptability to an on-board real-time environment: EfficientDet and YOLOv5. Experimental results indicate that the proposed visual model for waste container detection is able to effectively operate with consistent performance disregarding the container type (organic waste, plastic, glass and paper recycling,…) and the city layout, which has been assessed by evaluating it on eleven different Spanish cities that vary in terms of size, climate, urban layout and containers' appearance 
650 4 |a Journal Article 
650 4 |a Computer Vision 
650 4 |a Deep Learning 
650 4 |a Object detection 
650 4 |a Waste container localization 
650 7 |a Plastics  |2 NLM 
700 1 |a García-Martín, Álvaro  |e verfasserin  |4 aut 
700 1 |a Escudero-Viñolo, Marcos  |e verfasserin  |4 aut 
700 1 |a Martínez, José M  |e verfasserin  |4 aut 
700 1 |a Bescós, Jesús  |e verfasserin  |4 aut 
700 1 |a Peñuela, Jesús  |e verfasserin  |4 aut 
700 1 |a Martínez, Juan Carlos  |e verfasserin  |4 aut 
700 1 |a Alvis, Gonzalo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 152(2022) vom: 16. Okt., Seite 59-68  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnns 
773 1 8 |g volume:152  |g year:2022  |g day:16  |g month:10  |g pages:59-68 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2022.08.007  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 152  |j 2022  |b 16  |c 10  |h 59-68