|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM345033531 |
003 |
DE-627 |
005 |
20231226024139.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2022.3181973
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1150.xml
|
035 |
|
|
|a (DE-627)NLM345033531
|
035 |
|
|
|a (NLM)35984803
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Mei, Haiyang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Large-Field Contextual Feature Learning for Glass Detection
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 07.04.2023
|
500 |
|
|
|a Date Revised 11.04.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Glass is very common in our daily life. Existing computer vision systems neglect it and thus may have severe consequences, e.g., a robot may crash into a glass wall. However, sensing the presence of glass is not straightforward. The key challenge is that arbitrary objects/scenes can appear behind the glass. In this paper, we propose an important problem of detecting glass surfaces from a single RGB image. To address this problem, we construct the first large-scale glass detection dataset (GDD) and propose a novel glass detection network, called GDNet-B, which explores abundant contextual cues in a large field-of-view via a novel large-field contextual feature integration (LCFI) module and integrates both high-level and low-level boundary features with a boundary feature enhancement (BFE) module. Extensive experiments demonstrate that our GDNet-B achieves satisfying glass detection results on the images within and beyond the GDD testing set. We further validate the effectiveness and generalization capability of our proposed GDNet-B by applying it to other vision tasks, including mirror segmentation and salient object detection. Finally, we show the potential applications of glass detection and discuss possible future research directions
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Yang, Xin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Letian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Qiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wei, Xiaopeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lau, Rynson W H
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 45(2023), 3 vom: 19. März, Seite 3329-3346
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:45
|g year:2023
|g number:3
|g day:19
|g month:03
|g pages:3329-3346
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2022.3181973
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 45
|j 2023
|e 3
|b 19
|c 03
|h 3329-3346
|