Improved Generalization in Semi-Supervised Learning : A Survey of Theoretical Results

Semi-supervised learning is the learning setting in which we have both labeled and unlabeled data at our disposal. This survey covers theoretical results for this setting and maps out the benefits of unlabeled data in classification and regression tasks. Most methods that use unlabeled data rely on...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 4 vom: 19. Apr., Seite 4747-4767
1. Verfasser: Mey, Alexander (VerfasserIn)
Weitere Verfasser: Loog, Marco
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM345033493
003 DE-627
005 20231226024139.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3198175  |2 doi 
028 5 2 |a pubmed24n1150.xml 
035 |a (DE-627)NLM345033493 
035 |a (NLM)35984799 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mey, Alexander  |e verfasserin  |4 aut 
245 1 0 |a Improved Generalization in Semi-Supervised Learning  |b A Survey of Theoretical Results 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 11.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Semi-supervised learning is the learning setting in which we have both labeled and unlabeled data at our disposal. This survey covers theoretical results for this setting and maps out the benefits of unlabeled data in classification and regression tasks. Most methods that use unlabeled data rely on certain assumptions about the data distribution. When those assumptions are not met, including unlabeled data may actually decrease performance. For all practical purposes, it is therefore instructive to have an understanding of the underlying theory and the possible learning behavior that comes with it. This survey gathers results about the possible gains one can achieve when using semi-supervised learning as well as results about the limits of such methods. Specifically, it aims to answer the following questions: what are, in terms of improving supervised methods, the limits of semi-supervised learning? What are the assumptions of different methods? What can we achieve if the assumptions are true? As, indeed, the precise assumptions made are of the essence, this is where the survey's particular attention goes out to 
650 4 |a Journal Article 
700 1 |a Loog, Marco  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 4 vom: 19. Apr., Seite 4747-4767  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:4  |g day:19  |g month:04  |g pages:4747-4767 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3198175  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 4  |b 19  |c 04  |h 4747-4767