Discriminative Self-Paced Group-Metric Adaptation for Online Visual Identification

Existing solutions to instance-level visual identification usually aim to learn faithful and discriminative feature extractors from offline training data and directly use them for the unseen online testing data. However, their performance is largely limited due to the severe distribution shifting is...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 4 vom: 01. Apr., Seite 4368-4383
Auteur principal: Zhou, Jiahuan (Auteur)
Autres auteurs: Su, Bing, Wu, Ying
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM345033485
003 DE-627
005 20250303173402.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3200036  |2 doi 
028 5 2 |a pubmed25n1149.xml 
035 |a (DE-627)NLM345033485 
035 |a (NLM)35984798 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Jiahuan  |e verfasserin  |4 aut 
245 1 0 |a Discriminative Self-Paced Group-Metric Adaptation for Online Visual Identification 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 11.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Existing solutions to instance-level visual identification usually aim to learn faithful and discriminative feature extractors from offline training data and directly use them for the unseen online testing data. However, their performance is largely limited due to the severe distribution shifting issue between training and testing samples. Therefore, we propose a novel online group-metric adaptation model to adapt the offline learned identification models for the online data by learning a series of metrics for all sharing-subsets. Each sharing-subset is obtained from the proposed novel frequent sharing-subset mining module and contains a group of testing samples that share strong visual similarity relationships to each other. Furthermore, to handle potentially large-scale testing samples, we introduce self-paced learning (SPL) to gradually include samples into adaptation from easy to difficult which elaborately simulates the learning principle of humans. Unlike existing online visual identification methods, our model simultaneously takes both the sample-specific discriminant and the set-based visual similarity among testing samples into consideration. Our method is generally suitable to any off-the-shelf offline learned visual identification baselines for online performance improvement which can be verified by extensive experiments on several widely-used visual identification benchmarks 
650 4 |a Journal Article 
700 1 |a Su, Bing  |e verfasserin  |4 aut 
700 1 |a Wu, Ying  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 4 vom: 01. Apr., Seite 4368-4383  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:4  |g day:01  |g month:04  |g pages:4368-4383 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3200036  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 4  |b 01  |c 04  |h 4368-4383