TransFuser : Imitation With Transformer-Based Sensor Fusion for Autonomous Driving

How should we integrate representations from complementary sensors for autonomous driving? Geometry-based fusion has shown promise for perception (e.g., object detection, motion forecasting). However, in the context of end-to-end driving, we find that imitation learning based on existing sensor fusi...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 11 vom: 01. Nov., Seite 12878-12895
Auteur principal: Chitta, Kashyap (Auteur)
Autres auteurs: Prakash, Aditya, Jaeger, Bernhard, Yu, Zehao, Renz, Katrin, Geiger, Andreas
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
Description
Résumé:How should we integrate representations from complementary sensors for autonomous driving? Geometry-based fusion has shown promise for perception (e.g., object detection, motion forecasting). However, in the context of end-to-end driving, we find that imitation learning based on existing sensor fusion methods underperforms in complex driving scenarios with a high density of dynamic agents. Therefore, we propose TransFuser, a mechanism to integrate image and LiDAR representations using self-attention. Our approach uses transformer modules at multiple resolutions to fuse perspective view and bird's eye view feature maps. We experimentally validate its efficacy on a challenging new benchmark with long routes and dense traffic, as well as the official leaderboard of the CARLA urban driving simulator. At the time of submission, TransFuser outperforms all prior work on the CARLA leaderboard in terms of driving score by a large margin. Compared to geometry-based fusion, TransFuser reduces the average collisions per kilometer by 48%
Description:Date Revised 20.10.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2022.3200245