Optimizing Partial Area Under the Top-k Curve : Theory and Practice

Top- k error has become a popular metric for large-scale classification benchmarks due to the inevitable semantic ambiguity among classes. Existing literature on top- k optimization generally focuses on the optimization method of the top- k objective, while ignoring the limitations of the metric its...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 4 vom: 01. Apr., Seite 5053-5069
1. Verfasser: Wang, Zitai (VerfasserIn)
Weitere Verfasser: Xu, Qianqian, Yang, Zhiyong, He, Yuan, Cao, Xiaochun, Huang, Qingming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM344996670
003 DE-627
005 20250303172858.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3199970  |2 doi 
028 5 2 |a pubmed25n1149.xml 
035 |a (DE-627)NLM344996670 
035 |a (NLM)35981065 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Zitai  |e verfasserin  |4 aut 
245 1 0 |a Optimizing Partial Area Under the Top-k Curve  |b Theory and Practice 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 10.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Top- k error has become a popular metric for large-scale classification benchmarks due to the inevitable semantic ambiguity among classes. Existing literature on top- k optimization generally focuses on the optimization method of the top- k objective, while ignoring the limitations of the metric itself. In this paper, we point out that the top- k objective lacks enough discrimination such that the induced predictions may give a totally irrelevant label a top rank. To fix this issue, we develop a novel metric named partial Area Under the top- k Curve (AUTKC). Theoretical analysis shows that AUTKC has a better discrimination ability, and its Bayes optimal score function could give a correct top- K ranking with respect to the conditional probability. This shows that AUTKC does not allow irrelevant labels to appear in the top list. Furthermore, we present an empirical surrogate risk minimization framework to optimize the proposed metric. Theoretically, we present (1) a sufficient condition for Fisher consistency of the Bayes optimal score function; (2) a generalization upper bound which is insensitive to the number of classes under a simple hyperparameter setting. Finally, the experimental results on four benchmark datasets validate the effectiveness of our proposed framework 
650 4 |a Journal Article 
700 1 |a Xu, Qianqian  |e verfasserin  |4 aut 
700 1 |a Yang, Zhiyong  |e verfasserin  |4 aut 
700 1 |a He, Yuan  |e verfasserin  |4 aut 
700 1 |a Cao, Xiaochun  |e verfasserin  |4 aut 
700 1 |a Huang, Qingming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 4 vom: 01. Apr., Seite 5053-5069  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:4  |g day:01  |g month:04  |g pages:5053-5069 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3199970  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 4  |b 01  |c 04  |h 5053-5069