LEADER 01000caa a22002652c 4500
001 NLM344970957
003 DE-627
005 20250303172524.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.16371  |2 doi 
028 5 2 |a pubmed25n1149.xml 
035 |a (DE-627)NLM344970957 
035 |a (NLM)35978484 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Brodie, Stephanie  |e verfasserin  |4 aut 
245 1 0 |a Recommendations for quantifying and reducing uncertainty in climate projections of species distributions 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.10.2022 
500 |a Date Revised 07.01.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 
520 |a Projecting the future distributions of commercially and ecologically important species has become a critical approach for ecosystem managers to strategically anticipate change, but large uncertainties in projections limit climate adaptation planning. Although distribution projections are primarily used to understand the scope of potential change-rather than accurately predict specific outcomes-it is nonetheless essential to understand where and why projections can give implausible results and to identify which processes contribute to uncertainty. Here, we use a series of simulated species distributions, an ensemble of 252 species distribution models, and an ensemble of three regional ocean climate projections, to isolate the influences of uncertainty from earth system model spread and from ecological modeling. The simulations encompass marine species with different functional traits and ecological preferences to more broadly address resource manager and fishery stakeholder needs, and provide a simulated true state with which to evaluate projections. We present our results relative to the degree of environmental extrapolation from historical conditions, which helps facilitate interpretation by ecological modelers working in diverse systems. We found uncertainty associated with species distribution models can exceed uncertainty generated from diverging earth system models (up to 70% of total uncertainty by 2100), and that this result was consistent across species traits. Species distribution model uncertainty increased through time and was primarily related to the degree to which models extrapolated into novel environmental conditions but moderated by how well models captured the underlying dynamics driving species distributions. The predictive power of simulated species distribution models remained relatively high in the first 30 years of projections, in alignment with the time period in which stakeholders make strategic decisions based on climate information. By understanding sources of uncertainty, and how they change at different forecast horizons, we provide recommendations for projecting species distribution models under global climate change 
650 4 |a Journal Article 
650 4 |a artificial intelligence 
650 4 |a climate change 
650 4 |a earth system models 
650 4 |a extrapolation 
650 4 |a fisheries 
650 4 |a machine learning 
650 4 |a species distribution models 
650 4 |a virtual species 
700 1 |a Smith, James A  |e verfasserin  |4 aut 
700 1 |a Muhling, Barbara A  |e verfasserin  |4 aut 
700 1 |a Barnett, Lewis A K  |e verfasserin  |4 aut 
700 1 |a Carroll, Gemma  |e verfasserin  |4 aut 
700 1 |a Fiedler, Paul  |e verfasserin  |4 aut 
700 1 |a Bograd, Steven J  |e verfasserin  |4 aut 
700 1 |a Hazen, Elliott L  |e verfasserin  |4 aut 
700 1 |a Jacox, Michael G  |e verfasserin  |4 aut 
700 1 |a Andrews, Kelly S  |e verfasserin  |4 aut 
700 1 |a Barnes, Cheryl L  |e verfasserin  |4 aut 
700 1 |a Crozier, Lisa G  |e verfasserin  |4 aut 
700 1 |a Fiechter, Jerome  |e verfasserin  |4 aut 
700 1 |a Fredston, Alexa  |e verfasserin  |4 aut 
700 1 |a Haltuch, Melissa A  |e verfasserin  |4 aut 
700 1 |a Harvey, Chris J  |e verfasserin  |4 aut 
700 1 |a Holmes, Elizabeth  |e verfasserin  |4 aut 
700 1 |a Karp, Melissa A  |e verfasserin  |4 aut 
700 1 |a Liu, Owen R  |e verfasserin  |4 aut 
700 1 |a Malick, Michael J  |e verfasserin  |4 aut 
700 1 |a Pozo Buil, Mercedes  |e verfasserin  |4 aut 
700 1 |a Richerson, Kate  |e verfasserin  |4 aut 
700 1 |a Rooper, Christopher N  |e verfasserin  |4 aut 
700 1 |a Samhouri, Jameal  |e verfasserin  |4 aut 
700 1 |a Seary, Rachel  |e verfasserin  |4 aut 
700 1 |a Selden, Rebecca L  |e verfasserin  |4 aut 
700 1 |a Thompson, Andrew R  |e verfasserin  |4 aut 
700 1 |a Tommasi, Desiree  |e verfasserin  |4 aut 
700 1 |a Ward, Eric J  |e verfasserin  |4 aut 
700 1 |a Kaplan, Isaac C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 28(2022), 22 vom: 13. Nov., Seite 6586-6601  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnas 
773 1 8 |g volume:28  |g year:2022  |g number:22  |g day:13  |g month:11  |g pages:6586-6601 
856 4 0 |u http://dx.doi.org/10.1111/gcb.16371  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 22  |b 13  |c 11  |h 6586-6601