Decoupled Cross-Modal Phrase-Attention Network for Image-Sentence Matching

The mainstream of image and sentence matching studies currently focuses on fine-grained alignment of image regions and sentence words. However, these methods miss a crucial fact: the correspondence between images and sentences does not simply come from alignments between individual regions and words...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 19., Seite 1326-1337
1. Verfasser: Shi, Zhangxiang (VerfasserIn)
Weitere Verfasser: Zhang, Tianzhu, Wei, Xi, Wu, Feng, Zhang, Yongdong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM344954587
003 DE-627
005 20240214232549.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3197972  |2 doi 
028 5 2 |a pubmed24n1292.xml 
035 |a (DE-627)NLM344954587 
035 |a (NLM)35976823 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shi, Zhangxiang  |e verfasserin  |4 aut 
245 1 0 |a Decoupled Cross-Modal Phrase-Attention Network for Image-Sentence Matching 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The mainstream of image and sentence matching studies currently focuses on fine-grained alignment of image regions and sentence words. However, these methods miss a crucial fact: the correspondence between images and sentences does not simply come from alignments between individual regions and words but from alignments between the phrases they form respectively. In this work, we propose a novel Decoupled Cross-modal Phrase-Attention network (DCPA) for image-sentence matching by modeling the relationships between textual phrases and visual phrases. Furthermore, we design a novel decoupled manner for training and inferencing, which is able to release the trade-off for bi-directional retrieval, where image-to-sentence matching is executed in textual semantic space and sentence-to-image matching is executed in visual semantic space. Extensive experimental results on Flickr30K and MS-COCO demonstrate that the proposed method outperforms state-of-the-art methods by a large margin, and can compete with some methods introducing external knowledge 
650 4 |a Journal Article 
700 1 |a Zhang, Tianzhu  |e verfasserin  |4 aut 
700 1 |a Wei, Xi  |e verfasserin  |4 aut 
700 1 |a Wu, Feng  |e verfasserin  |4 aut 
700 1 |a Zhang, Yongdong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 19., Seite 1326-1337  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:19  |g pages:1326-1337 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3197972  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 19  |h 1326-1337