|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM344941213 |
003 |
DE-627 |
005 |
20231226023927.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202204185
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1149.xml
|
035 |
|
|
|a (DE-627)NLM344941213
|
035 |
|
|
|a (NLM)35975467
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Tang, Yichao
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Wireless Miniature Magnetic Phase-Change Soft Actuators
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 07.10.2022
|
500 |
|
|
|a Date Revised 18.09.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
520 |
|
|
|a Wireless miniature soft actuators are promising for various potential high-impact applications in medical, robotic grippers, and artificial muscles. However, these miniature soft actuators are currently constrained by a small output force and low work capacity. To address such challenges, a miniature magnetic phase-change soft composite actuator is reported. This soft actuator exhibits an expanding deformation and enables up to a 70 N output force and 175.2 J g-1 work capacity under remote magnetic radio frequency heating, which are 106 -107 times that of traditional magnetic soft actuators. To demonstrate its capabilities, a wireless soft robotic device is first designed that can withstand 0.24 m s-1 fluid flows in an artery phantom. By integrating it with a thermally-responsive shape-memory polymer and bistable metamaterial sleeve, a wireless reversible bistable stent is designed toward future potential angioplasty applications. Moreover, it can additionally locomote inside and jump out of granular media. At last, the phase-change actuator can realize programmable bending deformations when a specifically designed magnetization profile is encoded, enhancing its shape-programming capability. Such a miniature soft actuator provides an approach to enhance the mechanical output and versatility of magnetic soft robots and devices, extending their medical and other potential applications
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a high work capacity
|
650 |
|
4 |
|a magnetic soft composites
|
650 |
|
4 |
|a miniature wireless soft devices
|
650 |
|
4 |
|a phase-change materials
|
650 |
|
4 |
|a programmable shape deformation
|
650 |
|
7 |
|a Smart Materials
|2 NLM
|
700 |
1 |
|
|a Li, Mingtong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Tianlu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dong, Xiaoguang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Wenqi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sitti, Metin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 40 vom: 17. Okt., Seite e2204185
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:40
|g day:17
|g month:10
|g pages:e2204185
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202204185
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 40
|b 17
|c 10
|h e2204185
|