Machine Learning-Aided Microdroplets Breakup Characteristic Prediction in Flow-Focusing Microdevices by Incorporating Variations of Cross-Flow Tilt Angles

Controlling droplet breakup characteristics such as size, frequency, regime, and droplet quality within flow-focusing microfluidic devices is critical for different biomedical applications of droplet microfluidics such as drug delivery, biosensing, and nanomaterial preparation. The development of a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 34 vom: 30. Aug., Seite 10465-10477
1. Verfasser: Talebjedi, Bahram (VerfasserIn)
Weitere Verfasser: Abouei Mehrizi, Ali, Talebjedi, Behnam, Mohseni, Seyed Sepehr, Tasnim, Nishat, Hoorfar, Mina
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM344918890
003 DE-627
005 20231226023857.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.2c01255  |2 doi 
028 5 2 |a pubmed24n1149.xml 
035 |a (DE-627)NLM344918890 
035 |a (NLM)35973231 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Talebjedi, Bahram  |e verfasserin  |4 aut 
245 1 0 |a Machine Learning-Aided Microdroplets Breakup Characteristic Prediction in Flow-Focusing Microdevices by Incorporating Variations of Cross-Flow Tilt Angles 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.08.2022 
500 |a Date Revised 13.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Controlling droplet breakup characteristics such as size, frequency, regime, and droplet quality within flow-focusing microfluidic devices is critical for different biomedical applications of droplet microfluidics such as drug delivery, biosensing, and nanomaterial preparation. The development of a prediction platform capable of forecasting droplet breakup characteristics can significantly improve the iterative design and fabrication processes required for achieving desired performance. The present study aims to develop a multipurpose platform capable of predicting the working conditions of user-specific droplet size and frequency and reporting the quality of the generated droplets, regime, and hydrodynamical breakup characteristics in flow-focusing microdevices with different cross-junction tilt angles. Four different neural network-based prediction platforms were compared to accurately estimate capsule size, generation rate, uniformity, and circle metric. The trained capsule size and frequency networks were optimized using the heuristic optimization approach for establishing the Pareto optimal solution plot. To investigate the transition of the droplet generation regime (i.e., squeezing, dripping, and jetting), two different classification models (LDA and MLP) were developed and compared in terms of their prediction accuracy. The MLP model outperformed the LDA model with a cross-validation measure evaluated as 97.85%, demonstrating that the droplet quality and regime prediction models can provide an engineering judgment for the decision maker to choose between the suggested solutions on the Pareto front. The study followed a comprehensive hydrodynamical analysis of the junction angle effect on the dispersed thread formation, pressure, and velocity domains in the orifice 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Abouei Mehrizi, Ali  |e verfasserin  |4 aut 
700 1 |a Talebjedi, Behnam  |e verfasserin  |4 aut 
700 1 |a Mohseni, Seyed Sepehr  |e verfasserin  |4 aut 
700 1 |a Tasnim, Nishat  |e verfasserin  |4 aut 
700 1 |a Hoorfar, Mina  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 38(2022), 34 vom: 30. Aug., Seite 10465-10477  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:38  |g year:2022  |g number:34  |g day:30  |g month:08  |g pages:10465-10477 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.2c01255  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 38  |j 2022  |e 34  |b 30  |c 08  |h 10465-10477