Hybrid optimization and ontology-based semantic model for efficient text-based information retrieval

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.

Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing. - 1998. - 79(2023), 2 vom: 03., Seite 2251-2280
1. Verfasser: Kumar, Ram (VerfasserIn)
Weitere Verfasser: Sharma, S C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:The Journal of supercomputing
Schlagworte:Journal Article Aquila optimization COOT optimization Information retrieval system Modified Needleman Wunsch Query expansion Semantic information retrieval
LEADER 01000caa a22002652c 4500
001 NLM344861929
003 DE-627
005 20250303171010.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1007/s11227-022-04708-9  |2 doi 
028 5 2 |a pubmed25n1149.xml 
035 |a (DE-627)NLM344861929 
035 |a (NLM)35967462 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kumar, Ram  |e verfasserin  |4 aut 
245 1 0 |a Hybrid optimization and ontology-based semantic model for efficient text-based information retrieval 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.01.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. 
520 |a Query expansion is an important approach utilized to improve the efficiency of data retrieval tasks. Numerous works are carried out by the researchers to generate fair constructive results; however, they do not provide acceptable results for all kinds of queries particularly phrase and individual queries. The utilization of identical data sources and weighting strategies for expanding such terms are the major cause of this issue which leads the model unable to capture the comprehensive relationship between the query terms. In order to tackle this issue, we developed a novel approach for query expansion technique to analyze the different data sources namely WordNet, Wikipedia, and Text REtrieval Conference. This paper presents an Improved Aquila Optimization-based COOT(IAOCOOT) algorithm for query expansion which retrieves the semantic aspects that match the query term. The semantic heterogeneity associated with document retrieval mainly impacts the relevance matching between the query and the document. The main cause of this issue is that the similarity among the words is not evaluated correctly. To overcome this problem, we are using a Modified Needleman Wunsch algorithm algorithm to deal with the problems of uncertainty, imprecision in the information retrieval process, and semantic ambiguity of indexed terms in both the local and global perspectives. The k most similar word is determined and returned from a candidate set through the top-k words selection technique and it is widely utilized in different tasks. The proposed IAOCOOT model is evaluated using different standard Information Retrieval performance metrics to compute the validity of the proposed work by comparing it with other state-of-art techniques 
650 4 |a Journal Article 
650 4 |a Aquila optimization 
650 4 |a COOT optimization 
650 4 |a Information retrieval system 
650 4 |a Modified Needleman Wunsch 
650 4 |a Query expansion 
650 4 |a Semantic information retrieval 
700 1 |a Sharma, S C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The Journal of supercomputing  |d 1998  |g 79(2023), 2 vom: 03., Seite 2251-2280  |w (DE-627)NLM098252410  |x 0920-8542  |7 nnas 
773 1 8 |g volume:79  |g year:2023  |g number:2  |g day:03  |g pages:2251-2280 
856 4 0 |u http://dx.doi.org/10.1007/s11227-022-04708-9  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 79  |j 2023  |e 2  |b 03  |h 2251-2280