Long transient response of vegetation dynamics after four millennia of anthropogenic impacts in an island ecosystem

© 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 28(2022), 21 vom: 19. Nov., Seite 6318-6332
1. Verfasser: Oro, Daniel (VerfasserIn)
Weitere Verfasser: Pueyo, Yolanda, Bauzà, Joan, Errea, Maria Paz, Arroyo, Antonio Ignacio
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article harvesting invasive species island ecosystem long-term anthropogenic impacts transient dynamics
Beschreibung
Zusammenfassung:© 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Agents of global change commonly have a higher impact on island ecosystem dynamics. In the Mediterranean region, those dynamics have historically been influenced by anthropogenic impacts, for example, the introduction of invasive species and overharvesting of resources. Here, we analysed the spatio-temporal dynamics of vegetation in sa Dragonera island, which experienced a large environmental change ca. 4000 years ago by the arrival of humans. Anthropogenic impacts, such as herbivory by goats and over-logging, ended in the 1970s, while in 2011 the site became the largest Mediterranean island where rats were eradicated. Invasive rats and goats played the ecological role of two endemic species, the cave goat and the giant dormouse, which inhabited the island for more than 5 million years and were rapidly extinct by humans. We used Landsat imagery to explore NDVI as a proxy of vegetation productivity over the years 1984-2021, orthophotos to assess changes in land and vegetation covers and historical plant inventories to study the dynamics in plant diversity. Results showed that those indicators steadily increased both in spring and in summer, while the noise around the trends was partially explained by climate variability. The regime shifts in the temporal dynamics of vegetation productivity suggested a transient from a perturbed to a non-perturbed stable state. Trends in successional dynamics, spatial self-organization and plant diversity also showed the same type of transient dynamics. Historical perturbations related to harvesting (mainly the synergies between goat browsing, burning and forest over-logging) were more important than rat eradication or the influence of climate to explain the vegetation dynamics. Our study shows the transient nature of this small island ecosystem after 4000 years of perturbations and its current path towards vegetation dynamics more controlled by ecological interactions lacking large herbivores and omnivores, drought dynamics and the carrying capacity of the island
Beschreibung:Date Completed 04.10.2022
Date Revised 07.01.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1365-2486
DOI:10.1111/gcb.16363