|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM344678199 |
003 |
DE-627 |
005 |
20231226023330.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202204637
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1148.xml
|
035 |
|
|
|a (DE-627)NLM344678199
|
035 |
|
|
|a (NLM)35948461
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Ren, Bohua
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Dual-Scale Integration Design of Sn-ZnO Catalyst toward Efficient and Stable CO2 Electroreduction
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.09.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Electrochemical CO2 reduction to CO is a potential sustainable strategy for alleviating CO2 emission and producing valuable fuels. In the quest to resolve its current problems of low-energy efficiency and insufficient durability, a dual-scale design strategy is proposed by implanting a non-noble active Sn-ZnO heterointerface inside the nanopores of high-surface-area carbon nanospheres (Sn-ZnOHC). The metal d-bandwidth tuning of Sn and ZnO alters the extent of substrate-molecule orbital mixing, facilitating the breaking of the *COOH intermediate and the yield of CO. Furthermore, the confinement effect of tailored nanopores results in a beneficial pH distribution in the local environment around the Sn-ZnO nanoparticles and protects them against leaching and aggregating. Through integrating electronic and nanopore-scale control, Sn-ZnO@HC achieves a quite low potential of -0.53 V vs reversible hydrogen electrode (RHE) with 91% Faradaic efficiency for CO and an ultralong stability of 240 h. This work provides proof of concept for the multiscale design of electrocatalysts
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a carbon dioxide reduction
|
650 |
|
4 |
|a d bandwidth
|
650 |
|
4 |
|a dual-scale
|
650 |
|
4 |
|a electrocatalysis
|
650 |
|
4 |
|a nanoconfinement
|
700 |
1 |
|
|a Zhang, Zhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wen, Guobin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xiaowen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Mi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Weng, Yueying
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nie, Yihang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dou, Haozhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiang, Yi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Deng, Ya-Ping
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Guiru
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Luo, Dan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shui, Lingling
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Xin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Feng, Ming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Aiping
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Zhongwei
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 38 vom: 23. Sept., Seite e2204637
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:38
|g day:23
|g month:09
|g pages:e2204637
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202204637
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 38
|b 23
|c 09
|h e2204637
|