Learn-Explain-Reinforce : Counterfactual Reasoning and its Guidance to Reinforce an Alzheimer's Disease Diagnosis Model

Existing studies on disease diagnostic models focus either on diagnostic model learning for performance improvement or on the visual explanation of a trained diagnostic model. We propose a novel learn-explain-reinforce (LEAR) framework that unifies diagnostic model learning, visual explanation gener...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 4 vom: 10. Apr., Seite 4843-4857
1. Verfasser: Oh, Kwanseok (VerfasserIn)
Weitere Verfasser: Yoon, Jee Seok, Suk, Heung-Il
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM344669270
003 DE-627
005 20231226023318.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3197845  |2 doi 
028 5 2 |a pubmed24n1148.xml 
035 |a (DE-627)NLM344669270 
035 |a (NLM)35947563 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Oh, Kwanseok  |e verfasserin  |4 aut 
245 1 0 |a Learn-Explain-Reinforce  |b Counterfactual Reasoning and its Guidance to Reinforce an Alzheimer's Disease Diagnosis Model 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.04.2023 
500 |a Date Revised 05.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Existing studies on disease diagnostic models focus either on diagnostic model learning for performance improvement or on the visual explanation of a trained diagnostic model. We propose a novel learn-explain-reinforce (LEAR) framework that unifies diagnostic model learning, visual explanation generation (explanation unit), and trained diagnostic model reinforcement (reinforcement unit) guided by the visual explanation. For the visual explanation, we generate a counterfactual map that transforms an input sample to be identified as an intended target label. For example, a counterfactual map can localize hypothetical abnormalities within a normal brain image that may cause it to be diagnosed with Alzheimer's disease (AD). We believe that the generated counterfactual maps represent data-driven knowledge about a target task, i.e., AD diagnosis using structural MRI, which can be a vital source of information to reinforce the generalization of the trained diagnostic model. To this end, we devise an attention-based feature refinement module with the guidance of the counterfactual maps. The explanation and reinforcement units are reciprocal and can be operated iteratively. Our proposed approach was validated via qualitative and quantitative analysis on the ADNI dataset. Its comprehensibility and fidelity were demonstrated through ablation studies and comparisons with existing methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yoon, Jee Seok  |e verfasserin  |4 aut 
700 1 |a Suk, Heung-Il  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 4 vom: 10. Apr., Seite 4843-4857  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:4  |g day:10  |g month:04  |g pages:4843-4857 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3197845  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 4  |b 10  |c 04  |h 4843-4857