|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM344645436 |
003 |
DE-627 |
005 |
20240906231942.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202204957
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1525.xml
|
035 |
|
|
|a (DE-627)NLM344645436
|
035 |
|
|
|a (NLM)35945159
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kuo, Yu-An
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Massively Parallel Selection of NanoCluster Beacons
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 17.10.2022
|
500 |
|
|
|a Date Revised 06.09.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a NanoCluster Beacons (NCBs) are multicolor silver nanocluster probes whose fluorescence can be activated or tuned by a proximal DNA strand called the activator. While a single-nucleotide difference in a pair of activators can lead to drastically different activation outcomes, termed polar opposite twins (POTs), it is difficult to discover new POT-NCBs using the conventional low-throughput characterization approaches. Here, a high-throughput selection method is reported that takes advantage of repurposed next-generation-sequencing chips to screen the activation fluorescence of ≈40 000 activator sequences. It is found that the nucleobases at positions 7-12 of the 18-nucleotide-long activator are critical to creating bright NCBs and positions 4-6 and 2-4 are hotspots to generate yellow-orange and red POTs, respectively. Based on these findings, a "zipper-bag" model is proposed that can explain how these hotspots facilitate the formation of distinct silver cluster chromophores and alter their chemical yields. Combining high-throughput screening with machine-learning algorithms, a pipeline is established to design bright and multicolor NCBs in silico
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a NanoCluster Beacons
|
650 |
|
4 |
|a fluorescent nanomaterials
|
650 |
|
4 |
|a high-throughput screening
|
650 |
|
4 |
|a next-generation sequencing
|
650 |
|
4 |
|a silver nanoclusters
|
650 |
|
7 |
|a Nucleotides
|2 NLM
|
650 |
|
7 |
|a Silver
|2 NLM
|
650 |
|
7 |
|a 3M4G523W1G
|2 NLM
|
650 |
|
7 |
|a DNA
|2 NLM
|
650 |
|
7 |
|a 9007-49-2
|2 NLM
|
700 |
1 |
|
|a Jung, Cheulhee
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Yu-An
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kuo, Hung-Che
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Oliver S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nguyen, Trung D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rybarski, James R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hong, Soonwoo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Yuan-I
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wylie, Dennis C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hawkins, John A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Walker, Jada N
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shields, Samuel W J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Brodbelt, Jennifer S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Petty, Jeffrey T
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Finkelstein, Ilya J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yeh, Hsin-Chih
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 41 vom: 01. Okt., Seite e2204957
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:41
|g day:01
|g month:10
|g pages:e2204957
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202204957
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 41
|b 01
|c 10
|h e2204957
|