Combining Ultrasound and Capillary-Embedded T-Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation

Microbubbles are tiny gas-filled bubbles that have a variety of applications in ultrasound imaging and therapeutic drug delivery. Microbubbles can be synthesized using a number of techniques including sonication, amalgamation, and saline shaking. These approaches can produce highly concentrated micr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 33 vom: 23. Aug., Seite 10288-10304
1. Verfasser: Khan, Aaqib H (VerfasserIn)
Weitere Verfasser: Jiang, Xinyue, Kaushik, Anuj, Nair, Hari S, Edirisinghe, Mohan, Mercado-Shekhar, Karla P, Shekhar, Himanshu, Dalvi, Sameer V
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Contrast Media Suspensions
LEADER 01000naa a22002652 4500
001 NLM344627608
003 DE-627
005 20231226023219.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.2c01676  |2 doi 
028 5 2 |a pubmed24n1148.xml 
035 |a (DE-627)NLM344627608 
035 |a (NLM)35943351 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Khan, Aaqib H  |e verfasserin  |4 aut 
245 1 0 |a Combining Ultrasound and Capillary-Embedded T-Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.08.2022 
500 |a Date Revised 29.08.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Microbubbles are tiny gas-filled bubbles that have a variety of applications in ultrasound imaging and therapeutic drug delivery. Microbubbles can be synthesized using a number of techniques including sonication, amalgamation, and saline shaking. These approaches can produce highly concentrated microbubble suspensions but offer minimal control over the size and polydispersity of the microbubbles. One of the simplest and effective methods for producing monodisperse microbubbles is capillary-embedded T-junction microfluidic devices, which offer great control over the microbubble size. However, lower production rates (∼200 bubbles/s) and large microbubble sizes (∼300 μm) limit the applicability of such devices for biomedical applications. To overcome the limitations of these technologies, we demonstrate in this work an alternative approach to combine a capillary-embedded T-junction device with ultrasound to enhance the generation of narrow-sized microbubbles in aqueous suspensions. Two T-junction microfluidic devices were connected in parallel and combined with an ultrasonic horn to produce lipid-coated SF6 core microbubbles in the size range of 1-8 μm. The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 106 bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 109/mL to ∼2.3 × 106/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. The acoustic response of these microbubbles was examined using broadband attenuation spectroscopy, and flow phantom imaging was performed to determine the ability of these microbubble suspensions to enhance the contrast relative to the surrounding tissue. Overall, this approach of coupling ultrasound with microfluidic parallelization enabled the continuous production of stable microbubbles at high production rates and low polydispersity using simple T-junction devices 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Contrast Media  |2 NLM 
650 7 |a Suspensions  |2 NLM 
700 1 |a Jiang, Xinyue  |e verfasserin  |4 aut 
700 1 |a Kaushik, Anuj  |e verfasserin  |4 aut 
700 1 |a Nair, Hari S  |e verfasserin  |4 aut 
700 1 |a Edirisinghe, Mohan  |e verfasserin  |4 aut 
700 1 |a Mercado-Shekhar, Karla P  |e verfasserin  |4 aut 
700 1 |a Shekhar, Himanshu  |e verfasserin  |4 aut 
700 1 |a Dalvi, Sameer V  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 38(2022), 33 vom: 23. Aug., Seite 10288-10304  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:38  |g year:2022  |g number:33  |g day:23  |g month:08  |g pages:10288-10304 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.2c01676  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 38  |j 2022  |e 33  |b 23  |c 08  |h 10288-10304