LiteCovidNet : A lightweight deep neural network model for detection of COVID-19 using X-ray images

© 2022 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:International journal of imaging systems and technology. - 1990. - 32(2022), 5 vom: 25. Sept., Seite 1464-1480
1. Verfasser: Kumar, Sachin (VerfasserIn)
Weitere Verfasser: Shastri, Sourabh, Mahajan, Shilpa, Singh, Kuljeet, Gupta, Surbhi, Rani, Rajneesh, Mohan, Neeraj, Mansotra, Vibhakar
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:International journal of imaging systems and technology
Schlagworte:Journal Article COVID‐19 LiteCovidNet chest X‐ray classification deep neural network
LEADER 01000naa a22002652 4500
001 NLM344613518
003 DE-627
005 20231226023158.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/ima.22770  |2 doi 
028 5 2 |a pubmed24n1148.xml 
035 |a (DE-627)NLM344613518 
035 |a (NLM)35941931 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kumar, Sachin  |e verfasserin  |4 aut 
245 1 0 |a LiteCovidNet  |b A lightweight deep neural network model for detection of COVID-19 using X-ray images 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley Periodicals LLC. 
520 |a The syndrome called COVID-19 which was firstly spread in Wuhan, China has already been declared a globally "Pandemic." To stymie the further spread of the virus at an early stage, detection needs to be done. Artificial Intelligence-based deep learning models have gained much popularity in the detection of many diseases within the confines of biomedical sciences. In this paper, a deep neural network-based "LiteCovidNet" model is proposed that detects COVID-19 cases as the binary class (COVID-19, Normal) and the multi-class (COVID-19, Normal, Pneumonia) bifurcated based on chest X-ray images of the infected persons. An accuracy of 100% and 98.82% is achieved for binary and multi-class classification respectively which is competitive performance as compared to the other recent related studies. Hence, our methodology can be used by health professionals to validate the detection of COVID-19 infected patients at an early stage with convenient cost and better accuracy 
650 4 |a Journal Article 
650 4 |a COVID‐19 
650 4 |a LiteCovidNet 
650 4 |a chest X‐ray 
650 4 |a classification 
650 4 |a deep neural network 
700 1 |a Shastri, Sourabh  |e verfasserin  |4 aut 
700 1 |a Mahajan, Shilpa  |e verfasserin  |4 aut 
700 1 |a Singh, Kuljeet  |e verfasserin  |4 aut 
700 1 |a Gupta, Surbhi  |e verfasserin  |4 aut 
700 1 |a Rani, Rajneesh  |e verfasserin  |4 aut 
700 1 |a Mohan, Neeraj  |e verfasserin  |4 aut 
700 1 |a Mansotra, Vibhakar  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t International journal of imaging systems and technology  |d 1990  |g 32(2022), 5 vom: 25. Sept., Seite 1464-1480  |w (DE-627)NLM098193090  |x 0899-9457  |7 nnns 
773 1 8 |g volume:32  |g year:2022  |g number:5  |g day:25  |g month:09  |g pages:1464-1480 
856 4 0 |u http://dx.doi.org/10.1002/ima.22770  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2022  |e 5  |b 25  |c 09  |h 1464-1480