Neural Modeling of Portrait Bas-Relief From a Single Photograph

In this paper, we present an end-to-end neural solution to model portrait bas-relief from a single photograph, which is cast as a problem of image-to-depth translation. The main challenge is the lack of bas-relief data for network training. To solve this problem, we propose a semi-automatic pipeline...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 12 vom: 08. Dez., Seite 5008-5019
1. Verfasser: Zhang, Yu-Wei (VerfasserIn)
Weitere Verfasser: Luo, Ping, Zhou, Hao, Ji, Zhongping, Liu, Hui, Chen, Yanzhao, Zhang, Caiming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In this paper, we present an end-to-end neural solution to model portrait bas-relief from a single photograph, which is cast as a problem of image-to-depth translation. The main challenge is the lack of bas-relief data for network training. To solve this problem, we propose a semi-automatic pipeline to synthesize bas-relief samples. The main idea is to first construct normal maps from photos, and then generate bas-relief samples by reconstructing pixel-wise depths. In total, our synthetic dataset contains 23 k pixel-wise photo/bas-relief pairs. Since the process of bas-relief synthesis requires a certain amount of user interactions, we propose end-to-end solutions with various network architectures, and train them on the synthetic data. We select the one that gave the best results through qualitative and quantitative comparisons. Experiments on numerous portrait photos, comparisons with state-of-the-art methods and evaluations by artists have proven the effectiveness and efficiency of the selected network
Beschreibung:Date Revised 23.11.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2022.3197354