Self-Guided Belief Propagation - A Homotopy Continuation Method

Belief propagation (BP) is a popular method for performing probabilistic inference on graphical models. In this work, we enhance BP and propose self-guided belief propagation (SBP) that incorporates the pairwise potentials only gradually. This homotopy continuation method converges to a unique solut...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 4 vom: 08. Apr., Seite 5139-5157
Auteur principal: Knoll, Christian (Auteur)
Autres auteurs: Weller, Adrian, Pernkopf, Franz
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
Description
Résumé:Belief propagation (BP) is a popular method for performing probabilistic inference on graphical models. In this work, we enhance BP and propose self-guided belief propagation (SBP) that incorporates the pairwise potentials only gradually. This homotopy continuation method converges to a unique solution and increases the accuracy without increasing the computational burden. We provide a formal analysis to demonstrate that SBP finds the global optimum of the Bethe approximation for attractive models where all variables favor the same state. Moreover, we apply SBP to various graphs with random potentials and empirically show that: (i) SBP is superior in terms of accuracy whenever BP converges, and (ii) SBP obtains a unique, stable, and accurate solution whenever BP does not converge
Description:Date Completed 10.04.2023
Date Revised 11.04.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2022.3196140