Dual Contrastive Prediction for Incomplete Multi-View Representation Learning

In this article, we propose a unified framework to solve the following two challenging problems in incomplete multi-view representation learning: i) how to learn a consistent representation unifying different views, and ii) how to recover the missing views. To address the challenges, we provide an i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 4 vom: 30. Apr., Seite 4447-4461
1. Verfasser: Lin, Yijie (VerfasserIn)
Weitere Verfasser: Gou, Yuanbiao, Liu, Xiaotian, Bai, Jinfeng, Lv, Jiancheng, Peng, Xi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM34458903X
003 DE-627
005 20231226023124.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3197238  |2 doi 
028 5 2 |a pubmed24n1148.xml 
035 |a (DE-627)NLM34458903X 
035 |a (NLM)35939466 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lin, Yijie  |e verfasserin  |4 aut 
245 1 0 |a Dual Contrastive Prediction for Incomplete Multi-View Representation Learning 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 11.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this article, we propose a unified framework to solve the following two challenging problems in incomplete multi-view representation learning: i) how to learn a consistent representation unifying different views, and ii) how to recover the missing views. To address the challenges, we provide an information theoretical framework under which the consistency learning and data recovery are treated as a whole. With the theoretical framework, we propose a novel objective function which jointly solves the aforementioned two problems and achieves a provable sufficient and minimal representation. In detail, the consistency learning is performed by maximizing the mutual information of different views through contrastive learning, and the missing views are recovered by minimizing the conditional entropy through dual prediction. To the best of our knowledge, this is one of the first works to theoretically unify the cross-view consistency learning and data recovery for representation learning. Extensive experimental results show that the proposed method remarkably outperforms 20 competitive multi-view learning methods on six datasets in terms of clustering, classification, and human action recognition. The code could be accessed from https://pengxi.me 
650 4 |a Journal Article 
700 1 |a Gou, Yuanbiao  |e verfasserin  |4 aut 
700 1 |a Liu, Xiaotian  |e verfasserin  |4 aut 
700 1 |a Bai, Jinfeng  |e verfasserin  |4 aut 
700 1 |a Lv, Jiancheng  |e verfasserin  |4 aut 
700 1 |a Peng, Xi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 4 vom: 30. Apr., Seite 4447-4461  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:4  |g day:30  |g month:04  |g pages:4447-4461 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3197238  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 4  |b 30  |c 04  |h 4447-4461