Graph Convolution RPCA With Adaptive Graph

Principal component analysis (PCA) is warmly welcomed in dimensionality reduction and its applications. Due to the high sensitivity of PCA to outliers, a series of PCA methods are proposed to enhance the robustness of PCA. Besides, the representation ability of the existing PCA methods has limitatio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 08., Seite 6062-6071
1. Verfasser: Zhang, Rui (VerfasserIn)
Weitere Verfasser: Zhang, Wenlin, Li, Pei, Li, Xuelong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM344588912
003 DE-627
005 20250303163202.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3195669  |2 doi 
028 5 2 |a pubmed25n1148.xml 
035 |a (DE-627)NLM344588912 
035 |a (NLM)35939456 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Rui  |e verfasserin  |4 aut 
245 1 0 |a Graph Convolution RPCA With Adaptive Graph 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Principal component analysis (PCA) is warmly welcomed in dimensionality reduction and its applications. Due to the high sensitivity of PCA to outliers, a series of PCA methods are proposed to enhance the robustness of PCA. Besides, the representation ability of the existing PCA methods has limitations as well. To enhance the robustness and representation ability of robust PCA, we elaborate a novel Graph Convolution Robust PCA method (GRPCA) to incorporate the manifold structure into PCA. It constructs a sparse graph based on the local connectivity structure of samples. Graph auto-encoder is utilized to solve the robust PCA problem under the low-rank and sparse constraints. With the dual-decoder, GRPCA learns the low-dimensional embeddings that reconstruct the manifold structure and low-rank approximation simultaneously. Furthermore, since the graph suffers from misconnection triggered by occlusions, the local connectivity structure of low-dimensional embeddings is utilized to modify the graph. Our proposed method excels in both the clustering of low-dimensional embeddings and the low-rank recovery. Lastly, extensive experiments conducted on six real-world datasets demonstrated the efficiency and superiority of the proposed GRPCA 
650 4 |a Journal Article 
700 1 |a Zhang, Wenlin  |e verfasserin  |4 aut 
700 1 |a Li, Pei  |e verfasserin  |4 aut 
700 1 |a Li, Xuelong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 08., Seite 6062-6071  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:31  |g year:2022  |g day:08  |g pages:6062-6071 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3195669  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 08  |h 6062-6071