Fourier Series Expansion Based Filter Parametrization for Equivariant Convolutions

It has been shown that equivariant convolution is very helpful for many types of computer vision tasks. Recently, the 2D filter parametrization technique has played an important role for designing equivariant convolutions, and has achieved success in making use of rotation symmetry of images. Howeve...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 4 vom: 05. Apr., Seite 4537-4551
1. Verfasser: Xie, Qi (VerfasserIn)
Weitere Verfasser: Zhao, Qian, Xu, Zongben, Meng, Deyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM344499960
003 DE-627
005 20231226022919.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3196652  |2 doi 
028 5 2 |a pubmed24n1148.xml 
035 |a (DE-627)NLM344499960 
035 |a (NLM)35930514 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xie, Qi  |e verfasserin  |4 aut 
245 1 0 |a Fourier Series Expansion Based Filter Parametrization for Equivariant Convolutions 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 11.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a It has been shown that equivariant convolution is very helpful for many types of computer vision tasks. Recently, the 2D filter parametrization technique has played an important role for designing equivariant convolutions, and has achieved success in making use of rotation symmetry of images. However, the current filter parametrization strategy still has its evident drawbacks, where the most critical one lies in the accuracy problem of filter representation. To address this issue, in this paper we explore an ameliorated Fourier series expansion for 2D filters, and propose a new filter parametrization method based on it. The proposed filter parametrization method not only finely represents 2D filters with zero error when the filter is not rotated (similar as the classical Fourier series expansion), but also substantially alleviates the aliasing-effect-caused quality degradation when the filter is rotated (which usually arises in classical Fourier series expansion method). Accordingly, we construct a new equivariant convolution method based on the proposed filter parametrization method, named F-Conv. We prove that the equivariance of the proposed F-Conv is exact in the continuous domain, which becomes approximate only after discretization. Moreover, we provide theoretical error analysis for the case when the equivariance is approximate, showing that the approximation error is related to the mesh size and filter size. Extensive experiments show the superiority of the proposed method. Particularly, we adopt rotation equivariant convolution methods to a typical low-level image processing task, image super-resolution. It can be substantiated that the proposed F-Conv based method evidently outperforms classical convolution based methods. Compared with pervious filter parametrization based methods, the F-Conv performs more accurately on this low-level image processing task, reflecting its intrinsic capability of faithfully preserving rotation symmetries in local image features 
650 4 |a Journal Article 
700 1 |a Zhao, Qian  |e verfasserin  |4 aut 
700 1 |a Xu, Zongben  |e verfasserin  |4 aut 
700 1 |a Meng, Deyu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 4 vom: 05. Apr., Seite 4537-4551  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:4  |g day:05  |g month:04  |g pages:4537-4551 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3196652  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 4  |b 05  |c 04  |h 4537-4551