|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM344443337 |
003 |
DE-627 |
005 |
20231226022803.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202205015
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1148.xml
|
035 |
|
|
|a (DE-627)NLM344443337
|
035 |
|
|
|a (NLM)35924776
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kirch, Anton
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Accurate Wavelength Tracking by Exciton Spin Mixing
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.09.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
520 |
|
|
|a Wavelength-discriminating systems typically consist of heavy benchtop-based instruments, comprising diffractive optics, moving parts, and adjacent detectors. For simple wavelength measurements, such as lab-on-chip light source calibration or laser wavelength tracking, which do not require polychromatic analysis and cannot handle bulky spectroscopy instruments, lightweight, easy-to-process, and flexible single-pixel devices are attracting increasing attention. Here, a device is proposed for monotonously transforming wavelength information into the time domain with room-temperature phosphorescence at the heart of its functionality, which demonstrates a resolution down to 1 nm and below. It is solution-processed from a single host-guest system comprising organic room-temperature phosphors and colloidal quantum dots. The share of excited triplet states within the photoluminescent layer is dependent on the excitation wavelength and determines the afterglow intensity of the film, which is tracked by a simple photodetector. Finally, an all-organic thin-film wavelength sensor and two applications are demonstrated where this novel measurement concept successfully replaces a full spectrometer
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a colloidal quantum dots
|
650 |
|
4 |
|a dual-state Förster resonance energy transfer
|
650 |
|
4 |
|a organic room-temperature phosphorescence
|
650 |
|
4 |
|a organic wavelength sensors
|
650 |
|
4 |
|a transient photocurrent
|
700 |
1 |
|
|a Bärschneider, Toni
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Achenbach, Tim
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fries, Felix
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gmelch, Max
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Werberger, Robert
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guhrenz, Chris
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tomkevičienė, Aušra
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Benduhn, Johannes
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Eychmüller, Alexander
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Leo, Karl
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Reineke, Sebastian
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 38 vom: 18. Sept., Seite e2205015
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:38
|g day:18
|g month:09
|g pages:e2205015
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202205015
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 38
|b 18
|c 09
|h e2205015
|