Image Compression Using Stochastic-AFD Based Multisignal Sparse Representation

Adaptive Fourier decomposition (AFD) is a newly developed signal processing tool that can adaptively decompose any single signal using a Szegö kernel dictionary. To process multiple signals, a novel stochastic-AFD (SAFD) theory was recently proposed. The innovation of this study is twofold. First, a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 03., Seite 5317-5331
1. Verfasser: Dai, Lei (VerfasserIn)
Weitere Verfasser: Zhang, Liming, Li, Hong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM344409236
003 DE-627
005 20231226022713.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3194696  |2 doi 
028 5 2 |a pubmed24n1147.xml 
035 |a (DE-627)NLM344409236 
035 |a (NLM)35921349 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dai, Lei  |e verfasserin  |4 aut 
245 1 0 |a Image Compression Using Stochastic-AFD Based Multisignal Sparse Representation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 17.08.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Adaptive Fourier decomposition (AFD) is a newly developed signal processing tool that can adaptively decompose any single signal using a Szegö kernel dictionary. To process multiple signals, a novel stochastic-AFD (SAFD) theory was recently proposed. The innovation of this study is twofold. First, a SAFD-based general multi-signal sparse representation learning algorithm is designed and implemented for the first time in the literature, which can be used in many signal and image processing areas. Second, a novel SAFD based image compression framework is proposed. The algorithm design and implementation of the SAFD theory and image compression methods are presented in detail. The proposed compression methods are compared with 13 other state-of-the-art compression methods, including JPEG, JPEG2000, BPG, and other popular deep learning-based methods. The experimental results show that our methods achieve the best balanced performance. The proposed methods are based on single image adaptive sparse representation learning, and they require no pre-training. In addition, the decompression quality or compression efficiency can be easily adjusted by a single parameter, that is, the decomposition level. Our method is supported by a solid mathematical foundation, which has the potential to become a new core technology in image compression 
650 4 |a Journal Article 
700 1 |a Zhang, Liming  |e verfasserin  |4 aut 
700 1 |a Li, Hong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 03., Seite 5317-5331  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:03  |g pages:5317-5331 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3194696  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 03  |h 5317-5331