1xN Pattern for Pruning Convolutional Neural Networks

Though network pruning receives popularity in reducing the complexity of convolutional neural networks (CNNs), it remains an open issue to concurrently maintain model accuracy as well as achieve significant speedups on general CPUs. In this paper, we propose a novel 1×N pruning pattern to break this...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 4 vom: 28. Apr., Seite 3999-4008
1. Verfasser: Lin, Mingbao (VerfasserIn)
Weitere Verfasser: Zhang, Yuxin, Li, Yuchao, Chen, Bohong, Chao, Fei, Wang, Mengdi, Li, Shen, Tian, Yonghong, Ji, Rongrong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM344371719
003 DE-627
005 20231226022620.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3195774  |2 doi 
028 5 2 |a pubmed24n1147.xml 
035 |a (DE-627)NLM344371719 
035 |a (NLM)35917571 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lin, Mingbao  |e verfasserin  |4 aut 
245 1 0 |a 1xN Pattern for Pruning Convolutional Neural Networks 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 11.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Though network pruning receives popularity in reducing the complexity of convolutional neural networks (CNNs), it remains an open issue to concurrently maintain model accuracy as well as achieve significant speedups on general CPUs. In this paper, we propose a novel 1×N pruning pattern to break this limitation. In particular, consecutive N output kernels with the same input channel index are grouped into one block, which serves as a basic pruning granularity of our pruning pattern. Our 1×N pattern prunes these blocks considered unimportant. We also provide a workflow of filter rearrangement that first rearranges the weight matrix in the output channel dimension to derive more influential blocks for accuracy improvements and then applies similar rearrangement to the next-layer weights in the input channel dimension to ensure correct convolutional operations. Moreover, the output computation after our 1×N pruning can be realized via a parallelized block-wise vectorized operation, leading to significant speedups on general CPUs. The efficacy of our pruning pattern is proved with experiments on ILSVRC-2012. For example, given the pruning rate of 50% and N=4, our pattern obtains about 3.0% improvements over filter pruning in the top-1 accuracy of MobileNet-V2. Meanwhile, it obtains 56.04ms inference savings on Cortex-A7 CPU over weight pruning. Our project is made available at https://github.com/lmbxmu/1xN 
650 4 |a Journal Article 
700 1 |a Zhang, Yuxin  |e verfasserin  |4 aut 
700 1 |a Li, Yuchao  |e verfasserin  |4 aut 
700 1 |a Chen, Bohong  |e verfasserin  |4 aut 
700 1 |a Chao, Fei  |e verfasserin  |4 aut 
700 1 |a Wang, Mengdi  |e verfasserin  |4 aut 
700 1 |a Li, Shen  |e verfasserin  |4 aut 
700 1 |a Tian, Yonghong  |e verfasserin  |4 aut 
700 1 |a Ji, Rongrong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 4 vom: 28. Apr., Seite 3999-4008  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:4  |g day:28  |g month:04  |g pages:3999-4008 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3195774  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 4  |b 28  |c 04  |h 3999-4008