Control of Tyrosyl Radical Stabilization by {SiO2Oligopeptide} Hybrid Biomimetic Materials

Tyrosine radicals are notoriously short-lived/unstable in solution, while they present an impressive degree of stability and versatility in bioenzymes. Herein, we have developed a library of hybrid biomimetic materials (HBMs), which consists of tyrosine-containing oligopeptides covalently grafted on...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 38(2022), 32 vom: 16. Aug., Seite 9799-9809
1. Verfasser: Stathi, Panagiota (VerfasserIn)
Weitere Verfasser: Fotou, Evgenia, Moussis, Vassilios, Tsikaris, Vassilios, Louloudi, Maria, Deligiannakis, Yiannis
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Free Radicals Oligopeptides Tyrosine 42HK56048U Histidine 4QD397987E Silicon Dioxide 7631-86-9
Beschreibung
Zusammenfassung:Tyrosine radicals are notoriously short-lived/unstable in solution, while they present an impressive degree of stability and versatility in bioenzymes. Herein, we have developed a library of hybrid biomimetic materials (HBMs), which consists of tyrosine-containing oligopeptides covalently grafted on SiO2 nanoparticles, and studied the formation, lifetime, and redox properties of tyrosyl radicals. Using electron paramagnetic resonance spectroscopy, we have studied the radical-spin distribution as a probe of the local microenvironment of the tyrosyl radicals in the HBMs. We find that the lifetime of the tyrosyl radical can be enhanced by up to 6 times, by adjusting three factors, namely, a proximal histidine, the length of the oligopeptide, and the interface with the SiO2 nanomatrix. This is shown to be correlated to a significant lowering of E1/2 from +736 mV, in free tyrosine, to +548 mV in the {12-peptide}SiO2 material. Moreover, we show that grafting on SiO2 lowers the E1/2 of tyrosine radicals by ∼50 mV in all oligopeptides. Analysis of the spin-distribution by EPR reveals that the positioning of a histidine at a H-bonding distance from the tyrosine further favors tyrosine radical stabilization
Beschreibung:Date Completed 17.08.2022
Date Revised 29.08.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.2c00710