Bi-objective optimization of a stochastic resilient vaccine distribution network in the context of the COVID-19 pandemic

© 2022 Elsevier Ltd. All rights reserved.

Détails bibliographiques
Publié dans:Omega. - 1998. - 113(2022) vom: 28. Dez., Seite 102725
Auteur principal: Mohammadi, Mehrdad (Auteur)
Autres auteurs: Dehghan, Milad, Pirayesh, Amir, Dolgui, Alexandre
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Omega
Sujets:Journal Article Bi-objective mathematical optimization model COVID-19 Disruption Robust-stochastic optimization Uncertainty Vaccine distribution network
LEADER 01000caa a22002652c 4500
001 NLM344353966
003 DE-627
005 20250303160009.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.omega.2022.102725  |2 doi 
028 5 2 |a pubmed25n1147.xml 
035 |a (DE-627)NLM344353966 
035 |a (NLM)35915776 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mohammadi, Mehrdad  |e verfasserin  |4 aut 
245 1 0 |a Bi-objective optimization of a stochastic resilient vaccine distribution network in the context of the COVID-19 pandemic 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Elsevier Ltd. All rights reserved. 
520 |a This paper develops an approach to optimize a vaccine distribution network design through a mixed-integer nonlinear programming model with two objectives: minimizing the total expected number of deaths among the population and minimizing the total distribution cost of the vaccination campaign. Additionally, we assume that a set of input parameters (e.g., death rate, social contacts, vaccine supply, etc.) is uncertain, and the distribution network is exposed to disruptions. We then investigate the resilience of the distribution network through a scenario-based robust-stochastic optimization approach. The proposed model is linearized and finally validated through a real case study of the COVID-19 vaccination campaign in France. We show that the current vaccination strategies are not optimal, and vaccination prioritization among the population and the equity of vaccine distribution depend on other factors than those conceived by health policymakers. Furthermore, we demonstrate that a vaccination strategy mixing the population prioritization and the quarantine restrictions leads to an 8.5% decrease in the total number of deaths 
650 4 |a Journal Article 
650 4 |a Bi-objective mathematical optimization model 
650 4 |a COVID-19 
650 4 |a Disruption 
650 4 |a Robust-stochastic optimization 
650 4 |a Uncertainty 
650 4 |a Vaccine distribution network 
700 1 |a Dehghan, Milad  |e verfasserin  |4 aut 
700 1 |a Pirayesh, Amir  |e verfasserin  |4 aut 
700 1 |a Dolgui, Alexandre  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Omega  |d 1998  |g 113(2022) vom: 28. Dez., Seite 102725  |w (DE-627)NLM098123971  |x 0305-0483  |7 nnas 
773 1 8 |g volume:113  |g year:2022  |g day:28  |g month:12  |g pages:102725 
856 4 0 |u http://dx.doi.org/10.1016/j.omega.2022.102725  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 113  |j 2022  |b 28  |c 12  |h 102725