|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM344336913 |
003 |
DE-627 |
005 |
20231226022531.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2022.3191841
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1147.xml
|
035 |
|
|
|a (DE-627)NLM344336913
|
035 |
|
|
|a (NLM)35914041
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Xu, Zhe
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a HiSA
|b Hierarchically Semantic Associating for Video Temporal Grounding
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 05.08.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Video Temporal Grounding (VTG) aims to locate the time interval in a video that is semantically relevant to a language query. Existing VTG methods interact the query with entangled video features and treat the instances in a dataset independently. However, intra-video entanglement and inter-video connection are rarely considered in these methods, leading to mismatches between the video and language. To this end, we propose a novel method, dubbed Hierarchically Semantic Associating (HiSA), which aims to precisely align the video with language and obtain discriminative representation for further location regression. Specifically, the action factors and background factors are disentangled from adjacent video segments, enforcing precise multimodal interaction and alleviating the intra-video entanglement. In addition, cross-guided contrast is elaborately framed to capture the inter-video connection, which benefits the multimodal understanding to locate the time interval. Extensive experiments on three benchmark datasets demonstrate that our approach significantly outperforms the state-of-the-art methods. The project page is available at: https://github.com/zhexu1997/HiSA
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Chen, Da
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wei, Kun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Deng, Cheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xue, Hui
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 31(2022) vom: 01., Seite 5178-5188
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2022
|g day:01
|g pages:5178-5188
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2022.3191841
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2022
|b 01
|h 5178-5188
|