HiSA : Hierarchically Semantic Associating for Video Temporal Grounding

Video Temporal Grounding (VTG) aims to locate the time interval in a video that is semantically relevant to a language query. Existing VTG methods interact the query with entangled video features and treat the instances in a dataset independently. However, intra-video entanglement and inter-video co...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 01., Seite 5178-5188
1. Verfasser: Xu, Zhe (VerfasserIn)
Weitere Verfasser: Chen, Da, Wei, Kun, Deng, Cheng, Xue, Hui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM344336913
003 DE-627
005 20231226022531.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3191841  |2 doi 
028 5 2 |a pubmed24n1147.xml 
035 |a (DE-627)NLM344336913 
035 |a (NLM)35914041 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Zhe  |e verfasserin  |4 aut 
245 1 0 |a HiSA  |b Hierarchically Semantic Associating for Video Temporal Grounding 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.08.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Video Temporal Grounding (VTG) aims to locate the time interval in a video that is semantically relevant to a language query. Existing VTG methods interact the query with entangled video features and treat the instances in a dataset independently. However, intra-video entanglement and inter-video connection are rarely considered in these methods, leading to mismatches between the video and language. To this end, we propose a novel method, dubbed Hierarchically Semantic Associating (HiSA), which aims to precisely align the video with language and obtain discriminative representation for further location regression. Specifically, the action factors and background factors are disentangled from adjacent video segments, enforcing precise multimodal interaction and alleviating the intra-video entanglement. In addition, cross-guided contrast is elaborately framed to capture the inter-video connection, which benefits the multimodal understanding to locate the time interval. Extensive experiments on three benchmark datasets demonstrate that our approach significantly outperforms the state-of-the-art methods. The project page is available at: https://github.com/zhexu1997/HiSA 
650 4 |a Journal Article 
700 1 |a Chen, Da  |e verfasserin  |4 aut 
700 1 |a Wei, Kun  |e verfasserin  |4 aut 
700 1 |a Deng, Cheng  |e verfasserin  |4 aut 
700 1 |a Xue, Hui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 01., Seite 5178-5188  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:01  |g pages:5178-5188 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3191841  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 01  |h 5178-5188