Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials : A Machine-Learning Model Combining Density-Functional Theory and GW

© 2022 The Authors. Published by American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 34(2022), 14 vom: 26. Juli, Seite 6240-6254
1. Verfasser: Golze, Dorothea (VerfasserIn)
Weitere Verfasser: Hirvensalo, Markus, Hernández-León, Patricia, Aarva, Anja, Etula, Jarkko, Susi, Toma, Rinke, Patrick, Laurila, Tomi, Caro, Miguel A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM34430227X
003 DE-627
005 20240901232344.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.chemmater.1c04279  |2 doi 
028 5 2 |a pubmed24n1519.xml 
035 |a (DE-627)NLM34430227X 
035 |a (NLM)35910537 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Golze, Dorothea  |e verfasserin  |4 aut 
245 1 0 |a Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials  |b A Machine-Learning Model Combining Density-Functional Theory and GW 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 The Authors. Published by American Chemical Society. 
520 |a We present a quantitatively accurate machine-learning (ML) model for the computational prediction of core-electron binding energies, from which X-ray photoelectron spectroscopy (XPS) spectra can be readily obtained. Our model combines density functional theory (DFT) with GW and uses kernel ridge regression for the ML predictions. We apply the new approach to disordered materials and small molecules containing carbon, hydrogen, and oxygen and obtain qualitative and quantitative agreement with experiment, resolving spectral features within 0.1 eV of reference experimental spectra. The method only requires the user to provide a structural model for the material under study to obtain an XPS prediction within seconds. Our new tool is freely available online through the XPS Prediction Server 
650 4 |a Journal Article 
700 1 |a Hirvensalo, Markus  |e verfasserin  |4 aut 
700 1 |a Hernández-León, Patricia  |e verfasserin  |4 aut 
700 1 |a Aarva, Anja  |e verfasserin  |4 aut 
700 1 |a Etula, Jarkko  |e verfasserin  |4 aut 
700 1 |a Susi, Toma  |e verfasserin  |4 aut 
700 1 |a Rinke, Patrick  |e verfasserin  |4 aut 
700 1 |a Laurila, Tomi  |e verfasserin  |4 aut 
700 1 |a Caro, Miguel A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Chemistry of materials : a publication of the American Chemical Society  |d 1998  |g 34(2022), 14 vom: 26. Juli, Seite 6240-6254  |w (DE-627)NLM098194763  |x 0897-4756  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:14  |g day:26  |g month:07  |g pages:6240-6254 
856 4 0 |u http://dx.doi.org/10.1021/acs.chemmater.1c04279  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 14  |b 26  |c 07  |h 6240-6254