|  |  |  |  | 
| LEADER | 01000caa a22002652c 4500 | 
| 001 | NLM344247775 | 
| 003 | DE-627 | 
| 005 | 20250303154532.0 | 
| 007 | cr uuu---uuuuu | 
| 008 | 231226s2023    xx |||||o     00| ||eng c | 
| 024 | 7 |  | |a 10.1109/TPAMI.2022.3191996 
  |2 doi | 
| 028 | 5 | 2 | |a pubmed25n1147.xml | 
| 035 |  |  | |a (DE-627)NLM344247775 | 
| 035 |  |  | |a (NLM)35905065 | 
| 040 |  |  | |a DE-627 
  |b ger 
  |c DE-627 
  |e rakwb | 
| 041 |  |  | |a eng | 
| 100 | 1 |  | |a Weber, Ethan 
  |e verfasserin 
  |4 aut | 
| 245 | 1 | 0 | |a Incidents1M 
  |b A Large-Scale Dataset of Images With Natural Disasters, Damage, and Incidents | 
| 264 |  | 1 | |c 2023 | 
| 336 |  |  | |a Text 
  |b txt 
  |2 rdacontent | 
| 337 |  |  | |a ƒaComputermedien 
  |b c 
  |2 rdamedia | 
| 338 |  |  | |a ƒa Online-Ressource 
  |b cr 
  |2 rdacarrier | 
| 500 |  |  | |a Date Completed 10.04.2023 | 
| 500 |  |  | |a Date Revised 11.04.2023 | 
| 500 |  |  | |a published: Print-Electronic | 
| 500 |  |  | |a Citation Status PubMed-not-MEDLINE | 
| 520 |  |  | |a Natural disasters, such as floods, tornadoes, or wildfires, are increasingly pervasive as the Earth undergoes global warming. It is difficult to predict when and where an incident will occur, so timely emergency response is critical to saving the lives of those endangered by destructive events. Fortunately, technology can play a role in these situations. Social media posts can be used as a low-latency data source to understand the progression and aftermath of a disaster, yet parsing this data is tedious without automated methods. Prior work has mostly focused on text-based filtering, yet image and video-based filtering remains largely unexplored. In this work, we present the Incidents1M Dataset, a large-scale multi-label dataset which contains 977,088 images, with 43 incident and 49 place categories. We provide details of the dataset construction, statistics and potential biases; introduce and train a model for incident detection; and perform image-filtering experiments on millions of images on Flickr and Twitter. We also present some applications on incident analysis to encourage and enable future work in computer vision for humanitarian aid. Code, data, and models are available at http://incidentsdataset.csail.mit.edu | 
| 650 |  | 4 | |a Journal Article | 
| 700 | 1 |  | |a Papadopoulos, Dim P 
  |e verfasserin 
  |4 aut | 
| 700 | 1 |  | |a Lapedriza, Agata 
  |e verfasserin 
  |4 aut | 
| 700 | 1 |  | |a Ofli, Ferda 
  |e verfasserin 
  |4 aut | 
| 700 | 1 |  | |a Imran, Muhammad 
  |e verfasserin 
  |4 aut | 
| 700 | 1 |  | |a Torralba, Antonio 
  |e verfasserin 
  |4 aut | 
| 773 | 0 | 8 | |i Enthalten in 
  |t IEEE transactions on pattern analysis and machine intelligence 
  |d 1979 
  |g 45(2023), 4 vom: 29. Apr., Seite 4768-4781 
  |w (DE-627)NLM098212257 
  |x 1939-3539 
  |7 nnas | 
| 773 | 1 | 8 | |g volume:45 
  |g year:2023 
  |g number:4 
  |g day:29 
  |g month:04 
  |g pages:4768-4781 | 
| 856 | 4 | 0 | |u http://dx.doi.org/10.1109/TPAMI.2022.3191996 
  |3 Volltext | 
| 912 |  |  | |a GBV_USEFLAG_A | 
| 912 |  |  | |a SYSFLAG_A | 
| 912 |  |  | |a GBV_NLM | 
| 912 |  |  | |a GBV_ILN_350 | 
| 951 |  |  | |a AR | 
| 952 |  |  | |d 45 
  |j 2023 
  |e 4 
  |b 29 
  |c 04 
  |h 4768-4781 |