Incidents1M : A Large-Scale Dataset of Images With Natural Disasters, Damage, and Incidents

Natural disasters, such as floods, tornadoes, or wildfires, are increasingly pervasive as the Earth undergoes global warming. It is difficult to predict when and where an incident will occur, so timely emergency response is critical to saving the lives of those endangered by destructive events. Fort...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 4 vom: 29. Apr., Seite 4768-4781
Auteur principal: Weber, Ethan (Auteur)
Autres auteurs: Papadopoulos, Dim P, Lapedriza, Agata, Ofli, Ferda, Imran, Muhammad, Torralba, Antonio
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM344247775
003 DE-627
005 20250303154532.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3191996  |2 doi 
028 5 2 |a pubmed25n1147.xml 
035 |a (DE-627)NLM344247775 
035 |a (NLM)35905065 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Weber, Ethan  |e verfasserin  |4 aut 
245 1 0 |a Incidents1M  |b A Large-Scale Dataset of Images With Natural Disasters, Damage, and Incidents 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 11.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Natural disasters, such as floods, tornadoes, or wildfires, are increasingly pervasive as the Earth undergoes global warming. It is difficult to predict when and where an incident will occur, so timely emergency response is critical to saving the lives of those endangered by destructive events. Fortunately, technology can play a role in these situations. Social media posts can be used as a low-latency data source to understand the progression and aftermath of a disaster, yet parsing this data is tedious without automated methods. Prior work has mostly focused on text-based filtering, yet image and video-based filtering remains largely unexplored. In this work, we present the Incidents1M Dataset, a large-scale multi-label dataset which contains 977,088 images, with 43 incident and 49 place categories. We provide details of the dataset construction, statistics and potential biases; introduce and train a model for incident detection; and perform image-filtering experiments on millions of images on Flickr and Twitter. We also present some applications on incident analysis to encourage and enable future work in computer vision for humanitarian aid. Code, data, and models are available at http://incidentsdataset.csail.mit.edu 
650 4 |a Journal Article 
700 1 |a Papadopoulos, Dim P  |e verfasserin  |4 aut 
700 1 |a Lapedriza, Agata  |e verfasserin  |4 aut 
700 1 |a Ofli, Ferda  |e verfasserin  |4 aut 
700 1 |a Imran, Muhammad  |e verfasserin  |4 aut 
700 1 |a Torralba, Antonio  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 4 vom: 29. Apr., Seite 4768-4781  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:4  |g day:29  |g month:04  |g pages:4768-4781 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3191996  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 4  |b 29  |c 04  |h 4768-4781