AirMeasurer : open-source software to quantify static and dynamic traits derived from multiseason aerial phenotyping to empower genetic mapping studies in rice

© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 236(2022), 4 vom: 23. Nov., Seite 1584-1604
1. Verfasser: Sun, Gang (VerfasserIn)
Weitere Verfasser: Lu, Hengyun, Zhao, Yan, Zhou, Jie, Jackson, Robert, Wang, Yongchun, Xu, Ling-Xiang, Wang, Ahong, Colmer, Joshua, Ober, Eric, Zhao, Qiang, Han, Bin, Zhou, Ji
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't 2D/3D trait analysis aerial phenotyping genetic mapping predictive modelling rice static and dynamic traits
LEADER 01000naa a22002652 4500
001 NLM344209741
003 DE-627
005 20231226022232.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.18314  |2 doi 
028 5 2 |a pubmed24n1147.xml 
035 |a (DE-627)NLM344209741 
035 |a (NLM)35901246 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sun, Gang  |e verfasserin  |4 aut 
245 1 0 |a AirMeasurer  |b open-source software to quantify static and dynamic traits derived from multiseason aerial phenotyping to empower genetic mapping studies in rice 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.10.2022 
500 |a Date Revised 22.03.2023 
500 |a published: Print-Electronic 
500 |a CommentIn: New Phytol. 2022 Nov;236(4):1229-1231. - PMID 35962746 
500 |a Citation Status MEDLINE 
520 |a © 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. 
520 |a Low-altitude aerial imaging, an approach that can collect large-scale plant imagery, has grown in popularity recently. Amongst many phenotyping approaches, unmanned aerial vehicles (UAVs) possess unique advantages as a consequence of their mobility, flexibility and affordability. Nevertheless, how to extract biologically relevant information effectively has remained challenging. Here, we present AirMeasurer, an open-source and expandable platform that combines automated image analysis, machine learning and original algorithms to perform trait analysis using 2D/3D aerial imagery acquired by low-cost UAVs in rice (Oryza sativa) trials. We applied the platform to study hundreds of rice landraces and recombinant inbred lines at two sites, from 2019 to 2021. A range of static and dynamic traits were quantified, including crop height, canopy coverage, vegetative indices and their growth rates. After verifying the reliability of AirMeasurer-derived traits, we identified genetic variants associated with selected growth-related traits using genome-wide association study and quantitative trait loci mapping. We found that the AirMeasurer-derived traits had led to reliable loci, some matched with published work, and others helped us to explore new candidate genes. Hence, we believe that our work demonstrates valuable advances in aerial phenotyping and automated 2D/3D trait analysis, providing high-quality phenotypic information to empower genetic mapping for crop improvement 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a 2D/3D trait analysis 
650 4 |a aerial phenotyping 
650 4 |a genetic mapping 
650 4 |a predictive modelling 
650 4 |a rice 
650 4 |a static and dynamic traits 
700 1 |a Lu, Hengyun  |e verfasserin  |4 aut 
700 1 |a Zhao, Yan  |e verfasserin  |4 aut 
700 1 |a Zhou, Jie  |e verfasserin  |4 aut 
700 1 |a Jackson, Robert  |e verfasserin  |4 aut 
700 1 |a Wang, Yongchun  |e verfasserin  |4 aut 
700 1 |a Xu, Ling-Xiang  |e verfasserin  |4 aut 
700 1 |a Wang, Ahong  |e verfasserin  |4 aut 
700 1 |a Colmer, Joshua  |e verfasserin  |4 aut 
700 1 |a Ober, Eric  |e verfasserin  |4 aut 
700 1 |a Zhao, Qiang  |e verfasserin  |4 aut 
700 1 |a Han, Bin  |e verfasserin  |4 aut 
700 1 |a Zhou, Ji  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 236(2022), 4 vom: 23. Nov., Seite 1584-1604  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:236  |g year:2022  |g number:4  |g day:23  |g month:11  |g pages:1584-1604 
856 4 0 |u http://dx.doi.org/10.1111/nph.18314  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 236  |j 2022  |e 4  |b 23  |c 11  |h 1584-1604